Identifying genetically driven clinical phenotypes using linear mixed models

Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region ar...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jonathan D. Mosley, John S. Witte, Emma K. Larkin, Lisa Bastarache, Christian M. Shaffer, Jason H. Karnes, C. Michael Stein, Elizabeth Phillips, Scott J. Hebbring, Murray H. Brilliant, John Mayer, Zhan Ye, Dan M. Roden, Joshua C. Denny
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2016
Materias:
Q
Acceso en línea:https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5401bbf278ce480b9e71837f9f3eca2c
record_format dspace
spelling oai:doaj.org-article:5401bbf278ce480b9e71837f9f3eca2c2021-12-02T14:38:34ZIdentifying genetically driven clinical phenotypes using linear mixed models10.1038/ncomms114332041-1723https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c2016-04-01T00:00:00Zhttps://doi.org/10.1038/ncomms11433https://doaj.org/toc/2041-1723Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region are associated with 44 phenotypes, 5 phenotypes which were not previously reported in GWASes.Jonathan D. MosleyJohn S. WitteEmma K. LarkinLisa BastaracheChristian M. ShafferJason H. KarnesC. Michael SteinElizabeth PhillipsScott J. HebbringMurray H. BrilliantJohn MayerZhan YeDan M. RodenJoshua C. DennyNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-8 (2016)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jonathan D. Mosley
John S. Witte
Emma K. Larkin
Lisa Bastarache
Christian M. Shaffer
Jason H. Karnes
C. Michael Stein
Elizabeth Phillips
Scott J. Hebbring
Murray H. Brilliant
John Mayer
Zhan Ye
Dan M. Roden
Joshua C. Denny
Identifying genetically driven clinical phenotypes using linear mixed models
description Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region are associated with 44 phenotypes, 5 phenotypes which were not previously reported in GWASes.
format article
author Jonathan D. Mosley
John S. Witte
Emma K. Larkin
Lisa Bastarache
Christian M. Shaffer
Jason H. Karnes
C. Michael Stein
Elizabeth Phillips
Scott J. Hebbring
Murray H. Brilliant
John Mayer
Zhan Ye
Dan M. Roden
Joshua C. Denny
author_facet Jonathan D. Mosley
John S. Witte
Emma K. Larkin
Lisa Bastarache
Christian M. Shaffer
Jason H. Karnes
C. Michael Stein
Elizabeth Phillips
Scott J. Hebbring
Murray H. Brilliant
John Mayer
Zhan Ye
Dan M. Roden
Joshua C. Denny
author_sort Jonathan D. Mosley
title Identifying genetically driven clinical phenotypes using linear mixed models
title_short Identifying genetically driven clinical phenotypes using linear mixed models
title_full Identifying genetically driven clinical phenotypes using linear mixed models
title_fullStr Identifying genetically driven clinical phenotypes using linear mixed models
title_full_unstemmed Identifying genetically driven clinical phenotypes using linear mixed models
title_sort identifying genetically driven clinical phenotypes using linear mixed models
publisher Nature Portfolio
publishDate 2016
url https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c
work_keys_str_mv AT jonathandmosley identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT johnswitte identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT emmaklarkin identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT lisabastarache identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT christianmshaffer identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT jasonhkarnes identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT cmichaelstein identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT elizabethphillips identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT scottjhebbring identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT murrayhbrilliant identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT johnmayer identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT zhanye identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT danmroden identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
AT joshuacdenny identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels
_version_ 1718390951187054592