Identifying genetically driven clinical phenotypes using linear mixed models
Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region ar...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:5401bbf278ce480b9e71837f9f3eca2c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:5401bbf278ce480b9e71837f9f3eca2c2021-12-02T14:38:34ZIdentifying genetically driven clinical phenotypes using linear mixed models10.1038/ncomms114332041-1723https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c2016-04-01T00:00:00Zhttps://doi.org/10.1038/ncomms11433https://doaj.org/toc/2041-1723Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region are associated with 44 phenotypes, 5 phenotypes which were not previously reported in GWASes.Jonathan D. MosleyJohn S. WitteEmma K. LarkinLisa BastaracheChristian M. ShafferJason H. KarnesC. Michael SteinElizabeth PhillipsScott J. HebbringMurray H. BrilliantJohn MayerZhan YeDan M. RodenJoshua C. DennyNature PortfolioarticleScienceQENNature Communications, Vol 7, Iss 1, Pp 1-8 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jonathan D. Mosley John S. Witte Emma K. Larkin Lisa Bastarache Christian M. Shaffer Jason H. Karnes C. Michael Stein Elizabeth Phillips Scott J. Hebbring Murray H. Brilliant John Mayer Zhan Ye Dan M. Roden Joshua C. Denny Identifying genetically driven clinical phenotypes using linear mixed models |
description |
Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region are associated with 44 phenotypes, 5 phenotypes which were not previously reported in GWASes. |
format |
article |
author |
Jonathan D. Mosley John S. Witte Emma K. Larkin Lisa Bastarache Christian M. Shaffer Jason H. Karnes C. Michael Stein Elizabeth Phillips Scott J. Hebbring Murray H. Brilliant John Mayer Zhan Ye Dan M. Roden Joshua C. Denny |
author_facet |
Jonathan D. Mosley John S. Witte Emma K. Larkin Lisa Bastarache Christian M. Shaffer Jason H. Karnes C. Michael Stein Elizabeth Phillips Scott J. Hebbring Murray H. Brilliant John Mayer Zhan Ye Dan M. Roden Joshua C. Denny |
author_sort |
Jonathan D. Mosley |
title |
Identifying genetically driven clinical phenotypes using linear mixed models |
title_short |
Identifying genetically driven clinical phenotypes using linear mixed models |
title_full |
Identifying genetically driven clinical phenotypes using linear mixed models |
title_fullStr |
Identifying genetically driven clinical phenotypes using linear mixed models |
title_full_unstemmed |
Identifying genetically driven clinical phenotypes using linear mixed models |
title_sort |
identifying genetically driven clinical phenotypes using linear mixed models |
publisher |
Nature Portfolio |
publishDate |
2016 |
url |
https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c |
work_keys_str_mv |
AT jonathandmosley identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT johnswitte identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT emmaklarkin identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT lisabastarache identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT christianmshaffer identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT jasonhkarnes identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT cmichaelstein identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT elizabethphillips identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT scottjhebbring identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT murrayhbrilliant identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT johnmayer identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT zhanye identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT danmroden identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels AT joshuacdenny identifyinggeneticallydrivenclinicalphenotypesusinglinearmixedmodels |
_version_ |
1718390951187054592 |