Identifying genetically driven clinical phenotypes using linear mixed models
Use of general linear mixed models (GLMMs) in genetic variance analysis can quantify the relative contribution of additive effects from genetic variation on a given trait. Here, Jonathan Mosley and colleagues apply GLMM in a phenome-wide analysis and show that genetic variations in the HLA region ar...
Guardado en:
Autores principales: | Jonathan D. Mosley, John S. Witte, Emma K. Larkin, Lisa Bastarache, Christian M. Shaffer, Jason H. Karnes, C. Michael Stein, Elizabeth Phillips, Scott J. Hebbring, Murray H. Brilliant, John Mayer, Zhan Ye, Dan M. Roden, Joshua C. Denny |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5401bbf278ce480b9e71837f9f3eca2c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
THE MODES OF POSTERIOR DISTRIBUTIONS FOR MIXED LINEAR MODELS
por: CARRIQUIRY,ALICIA L, et al.
Publicado: (2007) -
Topologically driven linear magnetoresistance in helimagnetic FeP
por: D. J. Campbell, et al.
Publicado: (2021) -
A power approximation for the Kenward and Roger Wald test in the linear mixed model.
por: Sarah M Kreidler, et al.
Publicado: (2021) -
Deep-ocean mixing driven by small-scale internal tides
por: Clément Vic, et al.
Publicado: (2019) -
A study paradigm integrating prospective epidemiologic cohorts and electronic health records to identify disease biomarkers
por: Jonathan D. Mosley, et al.
Publicado: (2018)