Memristor networks for real-time neural activity analysis
Designing energy efficient artificial neural networks for real-time analysis remains a challenge. Here, the authors report the development of a perovskite halide (CsPbI3) memristor-based Reservoir Computing system for real-time recognition of neural firing patterns and neural synchronization states.
Guardado en:
Autores principales: | Xiaojian Zhu, Qiwen Wang, Wei D. Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/540a4467b1ba426ca2b44bbe7445bba3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Real-time encoding and compression of neuronal spikes by metal-oxide memristors
por: Isha Gupta, et al.
Publicado: (2016) -
Efficient and self-adaptive in-situ learning in multilayer memristor neural networks
por: Can Li, et al.
Publicado: (2018) -
Memristor-Based Neural Network Circuit of Delay and Simultaneous Conditioning
por: Xinyu Xu, et al.
Publicado: (2021) -
Committee machines—a universal method to deal with non-idealities in memristor-based neural networks
por: D. Joksas, et al.
Publicado: (2020) -
Neural signal analysis with memristor arrays towards high-efficiency brain–machine interfaces
por: Zhengwu Liu, et al.
Publicado: (2020)