Synthesis of human amyloid restricted to liver results in an Alzheimer disease-like neurodegenerative phenotype.

Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that gen...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Virginie Lam, Ryusuke Takechi, Mark J Hackett, Roslyn Francis, Michael Bynevelt, Liesl M Celliers, Michael Nesbit, Somayra Mamsa, Frank Arfuso, Sukanya Das, Frank Koentgen, Maree Hagan, Lincoln Codd, Kirsty Richardson, Brenton O'Mara, Rainer K Scharli, Laurence Morandeau, Jonathan Gauntlett, Christopher Leatherday, Jan Boucek, John C L Mamo
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/540be8eaf710424384e6a5c34c3f0831
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Several lines of study suggest that peripheral metabolism of amyloid beta (Aß) is associated with risk for Alzheimer disease (AD). In blood, greater than 90% of Aß is complexed as an apolipoprotein, raising the possibility of a lipoprotein-mediated axis for AD risk. In this study, we report that genetic modification of C57BL/6J mice engineered to synthesise human Aß only in liver (hepatocyte-specific human amyloid (HSHA) strain) has marked neurodegeneration concomitant with capillary dysfunction, parenchymal extravasation of lipoprotein-Aß, and neurovascular inflammation. Moreover, the HSHA mice showed impaired performance in the passive avoidance test, suggesting impairment in hippocampal-dependent learning. Transmission electron microscopy shows marked neurovascular disruption in HSHA mice. This study provides causal evidence of a lipoprotein-Aß /capillary axis for onset and progression of a neurodegenerative process.