Radiomics feature robustness as measured using an MRI phantom
Abstract Radiomics involves high-throughput extraction of large numbers of quantitative features from medical images and analysis of these features to predict patients’ outcome and support clinical decision-making. However, radiomics features are sensitive to several factors, including scanning prot...
Guardado en:
Autores principales: | Joonsang Lee, Angela Steinmann, Yao Ding, Hannah Lee, Constance Owens, Jihong Wang, Jinzhong Yang, David Followill, Rachel Ger, Dennis MacKin, Laurence E. Court |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54192feb84fc48fc863463a32b264999 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Delta-radiomics features for the prediction of patient outcomes in non–small cell lung cancer
por: Xenia Fave, et al.
Publicado: (2017) -
Robustness of PET Radiomics Features: Impact of Co-Registration with MRI
por: Alessandro Stefano, et al.
Publicado: (2021) -
Repeatability and reproducibility study of radiomic features on a phantom and human cohort
por: A. K. Jha, et al.
Publicado: (2021) -
Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer
por: James C. Korte, et al.
Publicado: (2021) -
Author Correction: Radiomics feature stability of open-source software evaluated on apparent diffusion coefficient maps in head and neck cancer
por: James C. Korte, et al.
Publicado: (2021)