Plasmodium vivax malaria endemicity in Indonesia in 2010.

<h4>Background</h4>Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Iqbal R F Elyazar, Peter W Gething, Anand P Patil, Hanifah Rogayah, Elvieda Sariwati, Niken W Palupi, Siti N Tarmizi, Rita Kusriastuti, J Kevin Baird, Simon I Hay
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5431d1f4e862473e99c9bc15b3b50dfa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5431d1f4e862473e99c9bc15b3b50dfa
record_format dspace
spelling oai:doaj.org-article:5431d1f4e862473e99c9bc15b3b50dfa2021-11-18T07:18:17ZPlasmodium vivax malaria endemicity in Indonesia in 2010.1932-620310.1371/journal.pone.0037325https://doaj.org/article/5431d1f4e862473e99c9bc15b3b50dfa2012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22615978/?tool=EBIhttps://doaj.org/toc/1932-6203<h4>Background</h4>Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.<h4>Methods</h4>Plasmodium vivax Annual Parasite Incidence data (2006-2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985-2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1-99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR(1-99) endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface.<h4>Results</h4>We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east.<h4>Conclusion</h4>Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.Iqbal R F ElyazarPeter W GethingAnand P PatilHanifah RogayahElvieda SariwatiNiken W PalupiSiti N TarmiziRita KusriastutiJ Kevin BairdSimon I HayPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 5, p e37325 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Iqbal R F Elyazar
Peter W Gething
Anand P Patil
Hanifah Rogayah
Elvieda Sariwati
Niken W Palupi
Siti N Tarmizi
Rita Kusriastuti
J Kevin Baird
Simon I Hay
Plasmodium vivax malaria endemicity in Indonesia in 2010.
description <h4>Background</h4>Plasmodium vivax imposes substantial morbidity and mortality burdens in endemic zones. Detailed understanding of the contemporary spatial distribution of this parasite is needed to combat it. We used model based geostatistics (MBG) techniques to generate a contemporary map of risk of Plasmodium vivax malaria in Indonesia in 2010.<h4>Methods</h4>Plasmodium vivax Annual Parasite Incidence data (2006-2008) and temperature masks were used to map P. vivax transmission limits. A total of 4,658 community surveys of P. vivax parasite rate (PvPR) were identified (1985-2010) for mapping quantitative estimates of contemporary endemicity within those limits. After error-checking a total of 4,457 points were included into a national database of age-standardized 1-99 year old PvPR data. A Bayesian MBG procedure created a predicted PvPR(1-99) endemicity surface with uncertainty estimates. Population at risk estimates were derived with reference to a 2010 human population surface.<h4>Results</h4>We estimated 129.6 million people in Indonesia lived at risk of P. vivax transmission in 2010. Among these, 79.3% inhabited unstable transmission areas and 20.7% resided in stable transmission areas. In western Indonesia, the predicted P. vivax prevalence was uniformly low. Over 70% of the population at risk in this region lived on Java and Bali islands, where little malaria transmission occurs. High predicted prevalence areas were observed in the Lesser Sundas, Maluku and Papua. In general, prediction uncertainty was relatively low in the west and high in the east.<h4>Conclusion</h4>Most Indonesians living with endemic P. vivax experience relatively low risk of infection. However, blood surveys for this parasite are likely relatively insensitive and certainly do not detect the dormant liver stage reservoir of infection. The prospects for P. vivax elimination would be improved with deeper understanding of glucose-6-phosphate dehydrogenase deficiency (G6PDd) distribution, anti-relapse therapy practices and manageability of P. vivax importation risk, especially in Java and Bali.
format article
author Iqbal R F Elyazar
Peter W Gething
Anand P Patil
Hanifah Rogayah
Elvieda Sariwati
Niken W Palupi
Siti N Tarmizi
Rita Kusriastuti
J Kevin Baird
Simon I Hay
author_facet Iqbal R F Elyazar
Peter W Gething
Anand P Patil
Hanifah Rogayah
Elvieda Sariwati
Niken W Palupi
Siti N Tarmizi
Rita Kusriastuti
J Kevin Baird
Simon I Hay
author_sort Iqbal R F Elyazar
title Plasmodium vivax malaria endemicity in Indonesia in 2010.
title_short Plasmodium vivax malaria endemicity in Indonesia in 2010.
title_full Plasmodium vivax malaria endemicity in Indonesia in 2010.
title_fullStr Plasmodium vivax malaria endemicity in Indonesia in 2010.
title_full_unstemmed Plasmodium vivax malaria endemicity in Indonesia in 2010.
title_sort plasmodium vivax malaria endemicity in indonesia in 2010.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/5431d1f4e862473e99c9bc15b3b50dfa
work_keys_str_mv AT iqbalrfelyazar plasmodiumvivaxmalariaendemicityinindonesiain2010
AT peterwgething plasmodiumvivaxmalariaendemicityinindonesiain2010
AT anandppatil plasmodiumvivaxmalariaendemicityinindonesiain2010
AT hanifahrogayah plasmodiumvivaxmalariaendemicityinindonesiain2010
AT elviedasariwati plasmodiumvivaxmalariaendemicityinindonesiain2010
AT nikenwpalupi plasmodiumvivaxmalariaendemicityinindonesiain2010
AT sitintarmizi plasmodiumvivaxmalariaendemicityinindonesiain2010
AT ritakusriastuti plasmodiumvivaxmalariaendemicityinindonesiain2010
AT jkevinbaird plasmodiumvivaxmalariaendemicityinindonesiain2010
AT simonihay plasmodiumvivaxmalariaendemicityinindonesiain2010
_version_ 1718423663220359168