Effects of slow deep breathing at high altitude on oxygen saturation, pulmonary and systemic hemodynamics.

Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Stu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Grzegorz Bilo, Miriam Revera, Maurizio Bussotti, Daniele Bonacina, Katarzyna Styczkiewicz, Gianluca Caldara, Alessia Giglio, Andrea Faini, Andrea Giuliano, Carolina Lombardi, Kalina Kawecka-Jaszcz, Giuseppe Mancia, Piergiuseppe Agostoni, Gianfranco Parati
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/5436fe7313da49b0973f7c0e28f0a44b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Slow deep breathing improves blood oxygenation (Sp(O2)) and affects hemodynamics in hypoxic patients. We investigated the ventilatory and hemodynamic effects of slow deep breathing in normal subjects at high altitude. We collected data in healthy lowlanders staying either at 4559 m for 2-3 days (Study A; N = 39) or at 5400 m for 12-16 days (Study B; N = 28). Study variables, including Sp(O2) and systemic and pulmonary arterial pressure, were assessed before, during and after 15 minutes of breathing at 6 breaths/min. At the end of slow breathing, an increase in Sp(O2) (Study A: from 80.2±7.7% to 89.5±8.2%; Study B: from 81.0±4.2% to 88.6±4.5; both p<0.001) and significant reductions in systemic and pulmonary arterial pressure occurred. This was associated with increased tidal volume and no changes in minute ventilation or pulmonary CO diffusion. Slow deep breathing improves ventilation efficiency for oxygen as shown by blood oxygenation increase, and it reduces systemic and pulmonary blood pressure at high altitude but does not change pulmonary gas diffusion.