A Survey of Automatic Text Summarization: Progress, Process and Challenges

With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact var...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: M. F. Mridha, Aklima Akter Lima, Kamruddin Nur, Sujoy Chandra Das, Mahmud Hasan, Muhammad Mohsin Kabir
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
Acceso en línea:https://doaj.org/article/54475f64f083464099ac60fe7319c66c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54475f64f083464099ac60fe7319c66c
record_format dspace
spelling oai:doaj.org-article:54475f64f083464099ac60fe7319c66c2021-12-01T00:01:06ZA Survey of Automatic Text Summarization: Progress, Process and Challenges2169-353610.1109/ACCESS.2021.3129786https://doaj.org/article/54475f64f083464099ac60fe7319c66c2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9623462/https://doaj.org/toc/2169-3536With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact variant, preserving its knowledge and the actual meaning. Here we thoroughly investigate the automatic text summarization (ATS) and summarize the widely recognized ATS architectures. This paper outlines extractive and abstractive text summarization technologies and provides a deep taxonomy of the ATS domain. The taxonomy presents the classical ATS algorithms to modern deep learning ATS architectures. Every modern text summarization approach’s workflow and significance are reviewed with the limitations with potential recovery methods, including the feature extraction approaches, datasets, performance measurement techniques, and challenges of the ATS domain, etc. In addition, this paper concisely presents the past, present, and future research directions in the ATS domain.M. F. MridhaAklima Akter LimaKamruddin NurSujoy Chandra DasMahmud HasanMuhammad Mohsin KabirIEEEarticleAutomatic text summarizationfeature extractionsummarization methodsperformance measurement matriceschallengesElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 156043-156070 (2021)
institution DOAJ
collection DOAJ
language EN
topic Automatic text summarization
feature extraction
summarization methods
performance measurement matrices
challenges
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
spellingShingle Automatic text summarization
feature extraction
summarization methods
performance measurement matrices
challenges
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
M. F. Mridha
Aklima Akter Lima
Kamruddin Nur
Sujoy Chandra Das
Mahmud Hasan
Muhammad Mohsin Kabir
A Survey of Automatic Text Summarization: Progress, Process and Challenges
description With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact variant, preserving its knowledge and the actual meaning. Here we thoroughly investigate the automatic text summarization (ATS) and summarize the widely recognized ATS architectures. This paper outlines extractive and abstractive text summarization technologies and provides a deep taxonomy of the ATS domain. The taxonomy presents the classical ATS algorithms to modern deep learning ATS architectures. Every modern text summarization approach’s workflow and significance are reviewed with the limitations with potential recovery methods, including the feature extraction approaches, datasets, performance measurement techniques, and challenges of the ATS domain, etc. In addition, this paper concisely presents the past, present, and future research directions in the ATS domain.
format article
author M. F. Mridha
Aklima Akter Lima
Kamruddin Nur
Sujoy Chandra Das
Mahmud Hasan
Muhammad Mohsin Kabir
author_facet M. F. Mridha
Aklima Akter Lima
Kamruddin Nur
Sujoy Chandra Das
Mahmud Hasan
Muhammad Mohsin Kabir
author_sort M. F. Mridha
title A Survey of Automatic Text Summarization: Progress, Process and Challenges
title_short A Survey of Automatic Text Summarization: Progress, Process and Challenges
title_full A Survey of Automatic Text Summarization: Progress, Process and Challenges
title_fullStr A Survey of Automatic Text Summarization: Progress, Process and Challenges
title_full_unstemmed A Survey of Automatic Text Summarization: Progress, Process and Challenges
title_sort survey of automatic text summarization: progress, process and challenges
publisher IEEE
publishDate 2021
url https://doaj.org/article/54475f64f083464099ac60fe7319c66c
work_keys_str_mv AT mfmridha asurveyofautomatictextsummarizationprogressprocessandchallenges
AT aklimaakterlima asurveyofautomatictextsummarizationprogressprocessandchallenges
AT kamruddinnur asurveyofautomatictextsummarizationprogressprocessandchallenges
AT sujoychandradas asurveyofautomatictextsummarizationprogressprocessandchallenges
AT mahmudhasan asurveyofautomatictextsummarizationprogressprocessandchallenges
AT muhammadmohsinkabir asurveyofautomatictextsummarizationprogressprocessandchallenges
AT mfmridha surveyofautomatictextsummarizationprogressprocessandchallenges
AT aklimaakterlima surveyofautomatictextsummarizationprogressprocessandchallenges
AT kamruddinnur surveyofautomatictextsummarizationprogressprocessandchallenges
AT sujoychandradas surveyofautomatictextsummarizationprogressprocessandchallenges
AT mahmudhasan surveyofautomatictextsummarizationprogressprocessandchallenges
AT muhammadmohsinkabir surveyofautomatictextsummarizationprogressprocessandchallenges
_version_ 1718406139726528512