A Survey of Automatic Text Summarization: Progress, Process and Challenges
With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact var...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54475f64f083464099ac60fe7319c66c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54475f64f083464099ac60fe7319c66c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54475f64f083464099ac60fe7319c66c2021-12-01T00:01:06ZA Survey of Automatic Text Summarization: Progress, Process and Challenges2169-353610.1109/ACCESS.2021.3129786https://doaj.org/article/54475f64f083464099ac60fe7319c66c2021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9623462/https://doaj.org/toc/2169-3536With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact variant, preserving its knowledge and the actual meaning. Here we thoroughly investigate the automatic text summarization (ATS) and summarize the widely recognized ATS architectures. This paper outlines extractive and abstractive text summarization technologies and provides a deep taxonomy of the ATS domain. The taxonomy presents the classical ATS algorithms to modern deep learning ATS architectures. Every modern text summarization approach’s workflow and significance are reviewed with the limitations with potential recovery methods, including the feature extraction approaches, datasets, performance measurement techniques, and challenges of the ATS domain, etc. In addition, this paper concisely presents the past, present, and future research directions in the ATS domain.M. F. MridhaAklima Akter LimaKamruddin NurSujoy Chandra DasMahmud HasanMuhammad Mohsin KabirIEEEarticleAutomatic text summarizationfeature extractionsummarization methodsperformance measurement matriceschallengesElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 156043-156070 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Automatic text summarization feature extraction summarization methods performance measurement matrices challenges Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
Automatic text summarization feature extraction summarization methods performance measurement matrices challenges Electrical engineering. Electronics. Nuclear engineering TK1-9971 M. F. Mridha Aklima Akter Lima Kamruddin Nur Sujoy Chandra Das Mahmud Hasan Muhammad Mohsin Kabir A Survey of Automatic Text Summarization: Progress, Process and Challenges |
description |
With the evolution of the Internet and multimedia technology, the amount of text data has increased exponentially. This text volume is a precious source of information and knowledge that needs to be efficiently summarized. Text summarization is the method to reduce the source text into a compact variant, preserving its knowledge and the actual meaning. Here we thoroughly investigate the automatic text summarization (ATS) and summarize the widely recognized ATS architectures. This paper outlines extractive and abstractive text summarization technologies and provides a deep taxonomy of the ATS domain. The taxonomy presents the classical ATS algorithms to modern deep learning ATS architectures. Every modern text summarization approach’s workflow and significance are reviewed with the limitations with potential recovery methods, including the feature extraction approaches, datasets, performance measurement techniques, and challenges of the ATS domain, etc. In addition, this paper concisely presents the past, present, and future research directions in the ATS domain. |
format |
article |
author |
M. F. Mridha Aklima Akter Lima Kamruddin Nur Sujoy Chandra Das Mahmud Hasan Muhammad Mohsin Kabir |
author_facet |
M. F. Mridha Aklima Akter Lima Kamruddin Nur Sujoy Chandra Das Mahmud Hasan Muhammad Mohsin Kabir |
author_sort |
M. F. Mridha |
title |
A Survey of Automatic Text Summarization: Progress, Process and Challenges |
title_short |
A Survey of Automatic Text Summarization: Progress, Process and Challenges |
title_full |
A Survey of Automatic Text Summarization: Progress, Process and Challenges |
title_fullStr |
A Survey of Automatic Text Summarization: Progress, Process and Challenges |
title_full_unstemmed |
A Survey of Automatic Text Summarization: Progress, Process and Challenges |
title_sort |
survey of automatic text summarization: progress, process and challenges |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/54475f64f083464099ac60fe7319c66c |
work_keys_str_mv |
AT mfmridha asurveyofautomatictextsummarizationprogressprocessandchallenges AT aklimaakterlima asurveyofautomatictextsummarizationprogressprocessandchallenges AT kamruddinnur asurveyofautomatictextsummarizationprogressprocessandchallenges AT sujoychandradas asurveyofautomatictextsummarizationprogressprocessandchallenges AT mahmudhasan asurveyofautomatictextsummarizationprogressprocessandchallenges AT muhammadmohsinkabir asurveyofautomatictextsummarizationprogressprocessandchallenges AT mfmridha surveyofautomatictextsummarizationprogressprocessandchallenges AT aklimaakterlima surveyofautomatictextsummarizationprogressprocessandchallenges AT kamruddinnur surveyofautomatictextsummarizationprogressprocessandchallenges AT sujoychandradas surveyofautomatictextsummarizationprogressprocessandchallenges AT mahmudhasan surveyofautomatictextsummarizationprogressprocessandchallenges AT muhammadmohsinkabir surveyofautomatictextsummarizationprogressprocessandchallenges |
_version_ |
1718406139726528512 |