Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics
López-González et al study the fMRI brain dynamics and their underlying mechanism from patients that suffered brain injuries leading to a disorder of consciousness as well as from healthy subjects undergoing propofol-induced sedation. They show that pathological and pharmacological low-level states...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5455e3476f9844c49701d43bf6d7d548 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | López-González et al study the fMRI brain dynamics and their underlying mechanism from patients that suffered brain injuries leading to a disorder of consciousness as well as from healthy subjects undergoing propofol-induced sedation. They show that pathological and pharmacological low-level states of consciousness display disrupted synchronization patterns, higher constraint to the anatomy and a loss of heterogeneity and stability in the structural hubs compared to conscious states. |
---|