Identifying noncoding risk variants using disease-relevant gene regulatory networks

Current methods for prioritization of non-coding genetic risk variants are based on sequence and chromatin features. Here, Gao et al. develop ARVIN, which predicts causal regulatory variants using disease-relevant gene-regulatory networks, and validate this approach in reporter gene assays.

Guardado en:
Detalles Bibliográficos
Autores principales: Long Gao, Yasin Uzun, Peng Gao, Bing He, Xiaoke Ma, Jiahui Wang, Shizhong Han, Kai Tan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/5472bfb79e7346c78601c129c375ba8e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:5472bfb79e7346c78601c129c375ba8e
record_format dspace
spelling oai:doaj.org-article:5472bfb79e7346c78601c129c375ba8e2021-12-02T16:56:53ZIdentifying noncoding risk variants using disease-relevant gene regulatory networks10.1038/s41467-018-03133-y2041-1723https://doaj.org/article/5472bfb79e7346c78601c129c375ba8e2018-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-018-03133-yhttps://doaj.org/toc/2041-1723Current methods for prioritization of non-coding genetic risk variants are based on sequence and chromatin features. Here, Gao et al. develop ARVIN, which predicts causal regulatory variants using disease-relevant gene-regulatory networks, and validate this approach in reporter gene assays.Long GaoYasin UzunPeng GaoBing HeXiaoke MaJiahui WangShizhong HanKai TanNature PortfolioarticleScienceQENNature Communications, Vol 9, Iss 1, Pp 1-12 (2018)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Long Gao
Yasin Uzun
Peng Gao
Bing He
Xiaoke Ma
Jiahui Wang
Shizhong Han
Kai Tan
Identifying noncoding risk variants using disease-relevant gene regulatory networks
description Current methods for prioritization of non-coding genetic risk variants are based on sequence and chromatin features. Here, Gao et al. develop ARVIN, which predicts causal regulatory variants using disease-relevant gene-regulatory networks, and validate this approach in reporter gene assays.
format article
author Long Gao
Yasin Uzun
Peng Gao
Bing He
Xiaoke Ma
Jiahui Wang
Shizhong Han
Kai Tan
author_facet Long Gao
Yasin Uzun
Peng Gao
Bing He
Xiaoke Ma
Jiahui Wang
Shizhong Han
Kai Tan
author_sort Long Gao
title Identifying noncoding risk variants using disease-relevant gene regulatory networks
title_short Identifying noncoding risk variants using disease-relevant gene regulatory networks
title_full Identifying noncoding risk variants using disease-relevant gene regulatory networks
title_fullStr Identifying noncoding risk variants using disease-relevant gene regulatory networks
title_full_unstemmed Identifying noncoding risk variants using disease-relevant gene regulatory networks
title_sort identifying noncoding risk variants using disease-relevant gene regulatory networks
publisher Nature Portfolio
publishDate 2018
url https://doaj.org/article/5472bfb79e7346c78601c129c375ba8e
work_keys_str_mv AT longgao identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT yasinuzun identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT penggao identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT binghe identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT xiaokema identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT jiahuiwang identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT shizhonghan identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
AT kaitan identifyingnoncodingriskvariantsusingdiseaserelevantgeneregulatorynetworks
_version_ 1718382679788879872