Use of endo-ovarian tissue biopsy and pelvic aspirated fluid for the diagnosis of female genital tuberculosis by conventional versus molecular methods.

<h4>Background</h4>Til date, none of the diagnostic techniques available for the detection of female genital tuberculosis (FGTB) are 100% accurate. We therefore, proposed to use the endometrial tissue biopsies (ETBs), ovarian tissue biopsies (OTBs) and pelvic aspirated fluids (PAFs) for...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Venkanna Bhanothu, Jane P Theophilus, Roya Rozati
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/548d0e6e60264c6db846271b7abc5064
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>Til date, none of the diagnostic techniques available for the detection of female genital tuberculosis (FGTB) are 100% accurate. We therefore, proposed to use the endometrial tissue biopsies (ETBs), ovarian tissue biopsies (OTBs) and pelvic aspirated fluids (PAFs) for the diagnosis of FGTB among infertile women by conventional versus molecular methods.<h4>Methodology/principal findings</h4>A total of 302 specimens were collected both from 202 infertile women highly suspected of having FGTB on laparoscopy examination and 100 control women of reproductive age. Out of 302 specimens, 150 (49.67%) were ETBs, 95 (31.46%) were OTBs and 57 (18.87%) were PAFs. All specimens were tested by conventional techniques, later compared with multi-gene PCR for the detection of Mycobacterium tuberculosis (MTB) and correlated with laparoscopic findings. The presence of MTB DNA was observed in 49.5% of ETBs, 33.17% of OTBs and 5.44% of PAF specimens collected from highly suspected FGTB patients. All women of control group were confirmed as negative for tuberculosis. The conventional methods showed 99% to 100% specificity with a low sensitivity, ranging from 21.78% to 42.08% while hematoxylin and eosin staining showed a sensitivity of 51.48%. Multi-gene PCR was found to have much higher sensitivity of 70.29% with MTB64 gene, 86.63% with 19 kDa antigen gene at species and TRC4 element at regional MTB complex and 88.12% with 32 kDa protein gene at genus level. The specificity of multi-gene PCR was 100%. Compared with culturing and Ziehl-Neelsen's staining, multi-gene PCR demonstrated improvement in the detection of FGTB (χ2 = 214.612, 1 df, McNemar's test value <0.0001).<h4>Conclusions significance</h4>We suggest site specific sampling, irrespective of sample type and amplification of the 19 kDa antigen gene in combination with TRC4 element as a successful multi-gene PCR for the diagnosis of FGTB and differentiation of mycobacterial infection among endo-ovarian tissue biopsies and PAFs taken from infertile women.