Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane

Abstract In this article, a two-step activated carbon preparation technique from corncob has been elucidated. The derived catalysts AAC-CC has been characterized using various techniques for the determination of their structural properties and compared with AC-CC, already reported with another artic...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaspreet Kaur, Anil Kumar Sarma, Poonam Gera, Mithilesh Kumar Jha
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/54a441954eff4306bf5ab11a4e226849
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54a441954eff4306bf5ab11a4e226849
record_format dspace
spelling oai:doaj.org-article:54a441954eff4306bf5ab11a4e2268492021-12-02T13:39:34ZProcess optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane10.1038/s41598-021-87622-z2045-2322https://doaj.org/article/54a441954eff4306bf5ab11a4e2268492021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-87622-zhttps://doaj.org/toc/2045-2322Abstract In this article, a two-step activated carbon preparation technique from corncob has been elucidated. The derived catalysts AAC-CC has been characterized using various techniques for the determination of their structural properties and compared with AC-CC, already reported with another article. The conjugated boat structure of AAC-CC resulted in a very high surface area (779.8 m2/g) and high pore volume (0.428 cc/g). This unveils the suitability of AAC-CC as better among the two catalytic pathways for solketal production. The activated carbons so prepared have been used for the valorization of glycerol to produce 2,2-Dimethyl-1,3-dioxolane-4-methanol (solketal), oxygenated additives to fuel. The face-centered composite design (FCCD) of RSM was applied for the optimization of the reaction parameters for the ketalisation reaction using AAC-CC as a catalyst. From the optimized results, the acidic catalyst AAC-CC resulted in a glycerol conversion, i.e. 80.3% under the actual laboratory experiment. Moreover, the catalyst could be reused for three consecutive batch reactions without (< 5%) much reduction of activity and no distinctive structural deformity.Jaspreet KaurAnil Kumar SarmaPoonam GeraMithilesh Kumar JhaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Jaspreet Kaur
Anil Kumar Sarma
Poonam Gera
Mithilesh Kumar Jha
Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
description Abstract In this article, a two-step activated carbon preparation technique from corncob has been elucidated. The derived catalysts AAC-CC has been characterized using various techniques for the determination of their structural properties and compared with AC-CC, already reported with another article. The conjugated boat structure of AAC-CC resulted in a very high surface area (779.8 m2/g) and high pore volume (0.428 cc/g). This unveils the suitability of AAC-CC as better among the two catalytic pathways for solketal production. The activated carbons so prepared have been used for the valorization of glycerol to produce 2,2-Dimethyl-1,3-dioxolane-4-methanol (solketal), oxygenated additives to fuel. The face-centered composite design (FCCD) of RSM was applied for the optimization of the reaction parameters for the ketalisation reaction using AAC-CC as a catalyst. From the optimized results, the acidic catalyst AAC-CC resulted in a glycerol conversion, i.e. 80.3% under the actual laboratory experiment. Moreover, the catalyst could be reused for three consecutive batch reactions without (< 5%) much reduction of activity and no distinctive structural deformity.
format article
author Jaspreet Kaur
Anil Kumar Sarma
Poonam Gera
Mithilesh Kumar Jha
author_facet Jaspreet Kaur
Anil Kumar Sarma
Poonam Gera
Mithilesh Kumar Jha
author_sort Jaspreet Kaur
title Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
title_short Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
title_full Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
title_fullStr Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
title_full_unstemmed Process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
title_sort process optimization with acid functionalised activated carbon derived from corncob for production of 4-hydroxymethyl-2,2-dimethyl-1,3-dioxolane and 5-hydroxy-2,2-dimethyl-1,3-dioxane
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/54a441954eff4306bf5ab11a4e226849
work_keys_str_mv AT jaspreetkaur processoptimizationwithacidfunctionalisedactivatedcarbonderivedfromcorncobforproductionof4hydroxymethyl22dimethyl13dioxolaneand5hydroxy22dimethyl13dioxane
AT anilkumarsarma processoptimizationwithacidfunctionalisedactivatedcarbonderivedfromcorncobforproductionof4hydroxymethyl22dimethyl13dioxolaneand5hydroxy22dimethyl13dioxane
AT poonamgera processoptimizationwithacidfunctionalisedactivatedcarbonderivedfromcorncobforproductionof4hydroxymethyl22dimethyl13dioxolaneand5hydroxy22dimethyl13dioxane
AT mithileshkumarjha processoptimizationwithacidfunctionalisedactivatedcarbonderivedfromcorncobforproductionof4hydroxymethyl22dimethyl13dioxolaneand5hydroxy22dimethyl13dioxane
_version_ 1718392615223689216