Comparing artificial neural networks, general linear models and support vector machines in building predictive models for small interfering RNAs.
<h4>Background</h4>Exogenous short interfering RNAs (siRNAs) induce a gene knockdown effect in cells by interacting with naturally occurring RNA processing machinery. However not all siRNAs induce this effect equally. Several heterogeneous kinds of machine learning techniques and feature...
Guardado en:
Autores principales: | Kyle A McQuisten, Andrew S Peek |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2009
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54a6ebf42aa84d0aa39f142f1ab115e5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid Machine Learning Model for Body Fat Percentage Prediction Based on Support Vector Regression and Emotional Artificial Neural Networks
por: Solaf A. Hussain, et al.
Publicado: (2021) -
Carrot Sorting Based on Shape using Image Processing, Artificial Neural Network, and Support Vector Machine
por: A Jahanbakhshi, et al.
Publicado: (2019) -
Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach
por: Mahmoodi Chalbatani G, et al.
Publicado: (2019) -
Performance evaluation of linear discriminant analysis and support vector machines to classify cesarean section
por: Abdul Azis Abdillah, et al.
Publicado: (2021) -
Hourly Energy Consumption Forecasting for Office Buildings Based on Support Vector Machine
por: XIAO Ran, et al.
Publicado: (2021)