Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields
Abstract The Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54a839e55ee24edd863e0071ccb82ed8 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54a839e55ee24edd863e0071ccb82ed8 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54a839e55ee24edd863e0071ccb82ed82021-12-02T16:45:41ZProjected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields10.1038/s41598-021-95725-w2045-2322https://doaj.org/article/54a839e55ee24edd863e0071ccb82ed82021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95725-whttps://doaj.org/toc/2045-2322Abstract The Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.6) and a range of emission scenarios. For the NPI, reductions between 1.5 m w.e. (RCP2.6) and 1.9 m w.e. (RCP8.5) were estimated in the mean SMB during the period 2005–2050 compared to the historical period (1976–2005). For the SPI, the estimated reductions were between 1.1 m w.e. (RCP2.6) and 1.5 m w.e. (RCP8.5). Recently frontal ablation estimates suggest that mean SMB in the SPI is positively biased by 1.5 m w.e., probably due to accumulation overestimation. If it is assumed that frontal ablation rates of the recent past will continue, ice loss and sea-level rise contribution will increase. The trend towards lower SMB is mostly explained by an increase in surface melt. Positive ice loss feedbacks linked to increasing in meltwater availability are expected for calving glaciers.Claudio BravoDeniz BozkurtAndrew N. RossDuncan J. QuinceyNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Claudio Bravo Deniz Bozkurt Andrew N. Ross Duncan J. Quincey Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
description |
Abstract The Northern Patagonian Icefield (NPI) and the Southern Patagonian Icefield (SPI) have increased their ice mass loss in recent decades. In view of the impacts of glacier shrinkage in Patagonia, an assessment of the potential future surface mass balance (SMB) of the icefields is critical. We seek to provide this assessment by modelling the SMB between 1976 and 2050 for both icefields, using regional climate model data (RegCM4.6) and a range of emission scenarios. For the NPI, reductions between 1.5 m w.e. (RCP2.6) and 1.9 m w.e. (RCP8.5) were estimated in the mean SMB during the period 2005–2050 compared to the historical period (1976–2005). For the SPI, the estimated reductions were between 1.1 m w.e. (RCP2.6) and 1.5 m w.e. (RCP8.5). Recently frontal ablation estimates suggest that mean SMB in the SPI is positively biased by 1.5 m w.e., probably due to accumulation overestimation. If it is assumed that frontal ablation rates of the recent past will continue, ice loss and sea-level rise contribution will increase. The trend towards lower SMB is mostly explained by an increase in surface melt. Positive ice loss feedbacks linked to increasing in meltwater availability are expected for calving glaciers. |
format |
article |
author |
Claudio Bravo Deniz Bozkurt Andrew N. Ross Duncan J. Quincey |
author_facet |
Claudio Bravo Deniz Bozkurt Andrew N. Ross Duncan J. Quincey |
author_sort |
Claudio Bravo |
title |
Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
title_short |
Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
title_full |
Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
title_fullStr |
Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
title_full_unstemmed |
Projected increases in surface melt and ice loss for the Northern and Southern Patagonian Icefields |
title_sort |
projected increases in surface melt and ice loss for the northern and southern patagonian icefields |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/54a839e55ee24edd863e0071ccb82ed8 |
work_keys_str_mv |
AT claudiobravo projectedincreasesinsurfacemeltandicelossforthenorthernandsouthernpatagonianicefields AT denizbozkurt projectedincreasesinsurfacemeltandicelossforthenorthernandsouthernpatagonianicefields AT andrewnross projectedincreasesinsurfacemeltandicelossforthenorthernandsouthernpatagonianicefields AT duncanjquincey projectedincreasesinsurfacemeltandicelossforthenorthernandsouthernpatagonianicefields |
_version_ |
1718383453170302976 |