Direct Studies on the Lithium-Storage Mechanism of Molybdenum Disulfide

Abstract Transition metal sulfides are regarded as a type of high-performance anode materials for lithium ion batteries (LIBs). However, their electrochemical process and lithium-storage mechanism are complicated and remain controversial. This work is intended to give the direct observation on the e...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qingmei Su, Shixin Wang, Miao Feng, Gaohui Du, Bingshe Xu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/54aa0fe9409a45b4a0befef28ff98fc9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Transition metal sulfides are regarded as a type of high-performance anode materials for lithium ion batteries (LIBs). However, their electrochemical process and lithium-storage mechanism are complicated and remain controversial. This work is intended to give the direct observation on the electrochemical behavior and find out the lithium-storage mechanism of molybdenum disulfide (MoS2) using in situ transmission electron microscopy (TEM). We find that single-crystalline MoS2 nanosheets convert to Mo nanograins (~2 nm) embedded in Li2S matrix after the first full lithiation. After the delithiation, the Mo nanograins and Li2S transform to a large number of lamellar MoS2 nanocrystals. The discharge-charge cycling of MoS2 in LIBs is found to be a fully reversible conversion between MoS2 and Mo/Li2S rather than the electrochemical conversion between S and Li2S proposed by many researchers. The in situ real-time characterization results give direct evidence and profound insights into the lithium-storage mechanism of MoS2 as anode in LIBs.