The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis--a simulation study.
<h4>Background</h4>Meta-analyses including a limited number of patients and events are prone to yield overestimated intervention effect estimates. While many assume bias is the cause of overestimation, theoretical considerations suggest that random error may be an equal or more frequent...
Guardado en:
Autores principales: | Kristian Thorlund, Georgina Imberger, Michael Walsh, Rong Chu, Christian Gluud, Jørn Wetterslev, Gordon Guyatt, Philip J Devereaux, Lehana Thabane |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2011
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54b0c034152646c389878d8f4cb9b801 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Evolution of heterogeneity (I2) estimates and their 95% confidence intervals in large meta-analyses.
por: Kristian Thorlund, et al.
Publicado: (2012) -
Statistical multiplicity in systematic reviews of anaesthesia interventions: a quantification and comparison between Cochrane and non-Cochrane reviews.
por: Georgina Imberger, et al.
Publicado: (2011) -
Designing and analyzing clinical trials with composite outcomes: consideration of possible treatment differences between the individual outcomes.
por: Janice Pogue, et al.
Publicado: (2012) -
Color and time perception: Evidence for temporal overestimation of blue stimuli
por: S. Thönes, et al.
Publicado: (2018) -
Overestimation of the effect of climatic warming on spring phenology due to misrepresentation of chilling
por: Huanjiong Wang, et al.
Publicado: (2020)