Nitrogen-Mediated Graphene Oxide Enables Highly Efficient Proton Transfer

Abstract Two-dimensional (2D) graphene and graphene oxide (GO) offer great potential as a new type of cost-efficient proton-exchange membranes (PEM) for electrochemical devices. However, fundamental issues of proton transfer mechanism via 2D membranes are unclear and the transfer barrier for perfect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Guo-Liang Chai, Stephen A. Shevlin, Zhengxiao Guo
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/54b69fbd54da4e529a6ffa9dfedbe308
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Two-dimensional (2D) graphene and graphene oxide (GO) offer great potential as a new type of cost-efficient proton-exchange membranes (PEM) for electrochemical devices. However, fundamental issues of proton transfer mechanism via 2D membranes are unclear and the transfer barrier for perfect graphene are too high for practical application. Using ab initio molecular dynamic simulations, we screened the proton transfer barrier for different un-doped and nitrogen doped GO membranes, and clarified the corresponding transfer mechanisms. More significantly, we further identify that N-mediated GO can be built into a highly efficient PEM with a proton transfer rate of seven orders of magnitude higher than an un-doped case via. a proton relay mechanism between a ketone-like oxygen and a pyridine-like nitrogen across the vacancy site. The N-doped 2D GO is also impermeable to small molecules, and hence a highly efficient PEM for practical applications.