Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice

Background: Intermittent fasting (IF) can reduce energy intake and body weight (BW). Melatonin has many known functions, which include reducing appetite and preventing excessive weight gain.Objective: This study aimed to investigate the effects of IF on body fat and the gut microbiota and metabolome...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jingliang Liu, Yifan Zhong, Xin M. Luo, Yanfei Ma, Jianxin Liu, Haifeng Wang
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/54da4b976ad44895867f71445b285a05
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54da4b976ad44895867f71445b285a05
record_format dspace
spelling oai:doaj.org-article:54da4b976ad44895867f71445b285a052021-11-30T18:03:11ZIntermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice2296-861X10.3389/fnut.2021.784681https://doaj.org/article/54da4b976ad44895867f71445b285a052021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fnut.2021.784681/fullhttps://doaj.org/toc/2296-861XBackground: Intermittent fasting (IF) can reduce energy intake and body weight (BW). Melatonin has many known functions, which include reducing appetite and preventing excessive weight gain.Objective: This study aimed to investigate the effects of IF on body fat and the gut microbiota and metabolome as well as a potential interaction with melatonin.Methods: Male C57BL/6J mice (23.0 ± 0.9 g, 6 wk old) were randomly assigned into four groups (12 mice/group): control (C), intermittent fasting (F), melatonin (M), and intermittent fasting plus melatonin (MF). The C and M groups mice were provided with ad libitum access to food and water, while the F and MF groups underwent alternative-day feed deprivation (15 cycles total). Melatonin was administered in the drinking water of the M and MF groups. Blood, epididymal fat, liver tissue, and intestinal tissue and contents were collected for lab measurements, histology, and microbiota and metabolome analysis. Main effects and interactions were tested by 2-factor ANOVA.Results: IF significantly reduced BW gain and serum glucose, total cholesterol (TC) and triglyceride (TG) levels. Adipocyte size significantly decreased with IF, then the number of adipocytes per square millimeter significantly increased (P < 0.05). Compared to the C group, the M and MF groups had significantly higher serum melatonin levels (17 and 21%, respectively), although melatonin monotherapy had no effect on serum parameters and adipocytes. There was no interaction between IF and melatonin on BW gain and serum parameters except for on adipocyte area and number per square millimeter, Bacteroidetes and Akkermansia bacterial abundance, and the levels of the intestinal metabolites alanine, valine and isoleucine. IF changed the intestinal microbiota structure, with the F and MF groups clearly separating from the C and M groups. Metabolomic analysis showed that there was obvious separation between all four groups.Conclusions: IF, but neither melatonin nor the interaction between IF and melatonin, could alter intestinal microbiota and metabolism and prevent obesity by reducing BW gain, serum glucose, TC, and TG, and adipocyte size in mice.Jingliang LiuYifan ZhongXin M. LuoYanfei MaJianxin LiuHaifeng WangFrontiers Media S.A.articleintermittent fastingmelatoninliverintestinal morphologygut microbiotametabolitesNutrition. Foods and food supplyTX341-641ENFrontiers in Nutrition, Vol 8 (2021)
institution DOAJ
collection DOAJ
language EN
topic intermittent fasting
melatonin
liver
intestinal morphology
gut microbiota
metabolites
Nutrition. Foods and food supply
TX341-641
spellingShingle intermittent fasting
melatonin
liver
intestinal morphology
gut microbiota
metabolites
Nutrition. Foods and food supply
TX341-641
Jingliang Liu
Yifan Zhong
Xin M. Luo
Yanfei Ma
Jianxin Liu
Haifeng Wang
Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
description Background: Intermittent fasting (IF) can reduce energy intake and body weight (BW). Melatonin has many known functions, which include reducing appetite and preventing excessive weight gain.Objective: This study aimed to investigate the effects of IF on body fat and the gut microbiota and metabolome as well as a potential interaction with melatonin.Methods: Male C57BL/6J mice (23.0 ± 0.9 g, 6 wk old) were randomly assigned into four groups (12 mice/group): control (C), intermittent fasting (F), melatonin (M), and intermittent fasting plus melatonin (MF). The C and M groups mice were provided with ad libitum access to food and water, while the F and MF groups underwent alternative-day feed deprivation (15 cycles total). Melatonin was administered in the drinking water of the M and MF groups. Blood, epididymal fat, liver tissue, and intestinal tissue and contents were collected for lab measurements, histology, and microbiota and metabolome analysis. Main effects and interactions were tested by 2-factor ANOVA.Results: IF significantly reduced BW gain and serum glucose, total cholesterol (TC) and triglyceride (TG) levels. Adipocyte size significantly decreased with IF, then the number of adipocytes per square millimeter significantly increased (P < 0.05). Compared to the C group, the M and MF groups had significantly higher serum melatonin levels (17 and 21%, respectively), although melatonin monotherapy had no effect on serum parameters and adipocytes. There was no interaction between IF and melatonin on BW gain and serum parameters except for on adipocyte area and number per square millimeter, Bacteroidetes and Akkermansia bacterial abundance, and the levels of the intestinal metabolites alanine, valine and isoleucine. IF changed the intestinal microbiota structure, with the F and MF groups clearly separating from the C and M groups. Metabolomic analysis showed that there was obvious separation between all four groups.Conclusions: IF, but neither melatonin nor the interaction between IF and melatonin, could alter intestinal microbiota and metabolism and prevent obesity by reducing BW gain, serum glucose, TC, and TG, and adipocyte size in mice.
format article
author Jingliang Liu
Yifan Zhong
Xin M. Luo
Yanfei Ma
Jianxin Liu
Haifeng Wang
author_facet Jingliang Liu
Yifan Zhong
Xin M. Luo
Yanfei Ma
Jianxin Liu
Haifeng Wang
author_sort Jingliang Liu
title Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
title_short Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
title_full Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
title_fullStr Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
title_full_unstemmed Intermittent Fasting Reshapes the Gut Microbiota and Metabolome and Reduces Weight Gain More Effectively Than Melatonin in Mice
title_sort intermittent fasting reshapes the gut microbiota and metabolome and reduces weight gain more effectively than melatonin in mice
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/54da4b976ad44895867f71445b285a05
work_keys_str_mv AT jingliangliu intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
AT yifanzhong intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
AT xinmluo intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
AT yanfeima intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
AT jianxinliu intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
AT haifengwang intermittentfastingreshapesthegutmicrobiotaandmetabolomeandreducesweightgainmoreeffectivelythanmelatonininmice
_version_ 1718406379202412544