Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic
Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining s...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54eb4c4a5f7d40f09e98df8182119c8a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54eb4c4a5f7d40f09e98df8182119c8a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54eb4c4a5f7d40f09e98df8182119c8a2021-11-04T08:57:56ZSiberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic2624-955310.3389/fclim.2021.730943https://doaj.org/article/54eb4c4a5f7d40f09e98df8182119c8a2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fclim.2021.730943/fullhttps://doaj.org/toc/2624-9553Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications.Michael M. LorantyHeather D. AlexanderHeather KroppAnna C. TalucciElizabeth E. WebbFrontiers Media S.A.articleSiberialarchpermafrostwildfiresnow—vegetation interactionsecosystemsEnvironmental sciencesGE1-350ENFrontiers in Climate, Vol 3 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Siberia larch permafrost wildfire snow—vegetation interactions ecosystems Environmental sciences GE1-350 |
spellingShingle |
Siberia larch permafrost wildfire snow—vegetation interactions ecosystems Environmental sciences GE1-350 Michael M. Loranty Heather D. Alexander Heather Kropp Anna C. Talucci Elizabeth E. Webb Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
description |
Climate warming is altering the persistence, timing, and distribution of permafrost and snow cover across the terrestrial northern hemisphere. These cryospheric changes have numerous consequences, not least of which are positive climate feedbacks associated with lowered albedo related to declining snow cover, and greenhouse gas emissions from permafrost thaw. Given the large land areas affected, these feedbacks have the potential to impact climate on a global scale. Understanding the magnitudes and rates of changes in permafrost and snow cover is therefore integral for process understanding and quantification of climate change. However, while permafrost and snow cover are largely controlled by climate, their distributions and climate impacts are influenced by numerous interrelated ecosystem processes that also respond to climate and are highly heterogeneous in space and time. In this perspective we highlight ongoing and emerging changes in ecosystem processes that mediate how permafrost and snow cover interact with climate. We focus on larch forests in northeastern Siberia, which are expansive, ecologically unique, and studied less than other Arctic and subarctic regions. Emerging fire regime changes coupled with high ground ice have the potential to foster rapid regional changes in vegetation and permafrost thaw, with important climate feedback implications. |
format |
article |
author |
Michael M. Loranty Heather D. Alexander Heather Kropp Anna C. Talucci Elizabeth E. Webb |
author_facet |
Michael M. Loranty Heather D. Alexander Heather Kropp Anna C. Talucci Elizabeth E. Webb |
author_sort |
Michael M. Loranty |
title |
Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
title_short |
Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
title_full |
Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
title_fullStr |
Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
title_full_unstemmed |
Siberian Ecosystems as Drivers of Cryospheric Climate Feedbacks in the Terrestrial Arctic |
title_sort |
siberian ecosystems as drivers of cryospheric climate feedbacks in the terrestrial arctic |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/54eb4c4a5f7d40f09e98df8182119c8a |
work_keys_str_mv |
AT michaelmloranty siberianecosystemsasdriversofcryosphericclimatefeedbacksintheterrestrialarctic AT heatherdalexander siberianecosystemsasdriversofcryosphericclimatefeedbacksintheterrestrialarctic AT heatherkropp siberianecosystemsasdriversofcryosphericclimatefeedbacksintheterrestrialarctic AT annactalucci siberianecosystemsasdriversofcryosphericclimatefeedbacksintheterrestrialarctic AT elizabethewebb siberianecosystemsasdriversofcryosphericclimatefeedbacksintheterrestrialarctic |
_version_ |
1718444959134121984 |