MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition

Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zehba Raizah, Abdelraheem M. Aly, Noura Alsedais, Mohamed Ahmed Mansour
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae20
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54f0008dfb814f1f9b7efdbdd9f4ae20
record_format dspace
spelling oai:doaj.org-article:54f0008dfb814f1f9b7efdbdd9f4ae202021-12-02T19:02:27ZMHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition10.1038/s41598-021-95857-z2045-2322https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae202021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95857-zhttps://doaj.org/toc/2045-2322Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated vertical walls of an involved cavity have $${T}_{c}$$ T c and the plane walls are adiabatic. The heated part is put in the bottom wall and the left-top walls have lid velocities. The controlling dimensionless equations are numerically solved by the finite volume method through the SIMPLE technique. The varied parameters are scaled as a partial heat length (B: 0.2 to 0.8), heat generation/absorption coefficient (Q: − 2 to 2), thermal radiation parameter (R d : 0–5), Hartmann number (Ha: 0–50), the porosity parameter (ε: 0.4–0.9), inter-phase heat transfer coefficient (H *: 0–5000), the volume fraction of a hybrid nanofluid (ϕ: 0–0.1), modified conductivity ratio (k r : 0.01–100), Darcy parameter $$\left(Da: 1{0}^{-1}\,\mathrm{ to }\,1{0}^{-5}\right)$$ D a : 1 0 - 1 to 1 0 - 5 , and the position of a heat source (D: 0.3–0.7). The major findings reveal that the length and position of the heater are effective in improving the nanofluid movements and heat transfer within a wavy cavity. The isotherms of a solid part are significantly altered by the variations on $$Q$$ Q , $${R}_{d}$$ R d , $${H}^{*}$$ H ∗ and $${k}_{r}$$ k r . Increasing the heat generation/absorption coefficient and thermal radiation parameter is improving the isotherms of a solid phase. Expanding in the porous parameter $$\varepsilon$$ ε enhances the heat transfer of the fluid/solid phases.Zehba RaizahAbdelraheem M. AlyNoura AlsedaisMohamed Ahmed MansourNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-22 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Zehba Raizah
Abdelraheem M. Aly
Noura Alsedais
Mohamed Ahmed Mansour
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
description Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated vertical walls of an involved cavity have $${T}_{c}$$ T c and the plane walls are adiabatic. The heated part is put in the bottom wall and the left-top walls have lid velocities. The controlling dimensionless equations are numerically solved by the finite volume method through the SIMPLE technique. The varied parameters are scaled as a partial heat length (B: 0.2 to 0.8), heat generation/absorption coefficient (Q: − 2 to 2), thermal radiation parameter (R d : 0–5), Hartmann number (Ha: 0–50), the porosity parameter (ε: 0.4–0.9), inter-phase heat transfer coefficient (H *: 0–5000), the volume fraction of a hybrid nanofluid (ϕ: 0–0.1), modified conductivity ratio (k r : 0.01–100), Darcy parameter $$\left(Da: 1{0}^{-1}\,\mathrm{ to }\,1{0}^{-5}\right)$$ D a : 1 0 - 1 to 1 0 - 5 , and the position of a heat source (D: 0.3–0.7). The major findings reveal that the length and position of the heater are effective in improving the nanofluid movements and heat transfer within a wavy cavity. The isotherms of a solid part are significantly altered by the variations on $$Q$$ Q , $${R}_{d}$$ R d , $${H}^{*}$$ H ∗ and $${k}_{r}$$ k r . Increasing the heat generation/absorption coefficient and thermal radiation parameter is improving the isotherms of a solid phase. Expanding in the porous parameter $$\varepsilon$$ ε enhances the heat transfer of the fluid/solid phases.
format article
author Zehba Raizah
Abdelraheem M. Aly
Noura Alsedais
Mohamed Ahmed Mansour
author_facet Zehba Raizah
Abdelraheem M. Aly
Noura Alsedais
Mohamed Ahmed Mansour
author_sort Zehba Raizah
title MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
title_short MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
title_full MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
title_fullStr MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
title_full_unstemmed MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
title_sort mhd mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae20
work_keys_str_mv AT zehbaraizah mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition
AT abdelraheemmaly mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition
AT nouraalsedais mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition
AT mohamedahmedmansour mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition
_version_ 1718377264904667136