MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition
Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae20 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54f0008dfb814f1f9b7efdbdd9f4ae20 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54f0008dfb814f1f9b7efdbdd9f4ae202021-12-02T19:02:27ZMHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition10.1038/s41598-021-95857-z2045-2322https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae202021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95857-zhttps://doaj.org/toc/2045-2322Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated vertical walls of an involved cavity have $${T}_{c}$$ T c and the plane walls are adiabatic. The heated part is put in the bottom wall and the left-top walls have lid velocities. The controlling dimensionless equations are numerically solved by the finite volume method through the SIMPLE technique. The varied parameters are scaled as a partial heat length (B: 0.2 to 0.8), heat generation/absorption coefficient (Q: − 2 to 2), thermal radiation parameter (R d : 0–5), Hartmann number (Ha: 0–50), the porosity parameter (ε: 0.4–0.9), inter-phase heat transfer coefficient (H *: 0–5000), the volume fraction of a hybrid nanofluid (ϕ: 0–0.1), modified conductivity ratio (k r : 0.01–100), Darcy parameter $$\left(Da: 1{0}^{-1}\,\mathrm{ to }\,1{0}^{-5}\right)$$ D a : 1 0 - 1 to 1 0 - 5 , and the position of a heat source (D: 0.3–0.7). The major findings reveal that the length and position of the heater are effective in improving the nanofluid movements and heat transfer within a wavy cavity. The isotherms of a solid part are significantly altered by the variations on $$Q$$ Q , $${R}_{d}$$ R d , $${H}^{*}$$ H ∗ and $${k}_{r}$$ k r . Increasing the heat generation/absorption coefficient and thermal radiation parameter is improving the isotherms of a solid phase. Expanding in the porous parameter $$\varepsilon$$ ε enhances the heat transfer of the fluid/solid phases.Zehba RaizahAbdelraheem M. AlyNoura AlsedaisMohamed Ahmed MansourNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-22 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Zehba Raizah Abdelraheem M. Aly Noura Alsedais Mohamed Ahmed Mansour MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
description |
Abstract The current study treats the magnetic field impacts on the mixed convection flow within an undulating cavity filled by hybrid nanofluids and porous media. The local thermal non-equilibrium condition below the implications of heat generation and thermal radiation is conducted. The corrugated vertical walls of an involved cavity have $${T}_{c}$$ T c and the plane walls are adiabatic. The heated part is put in the bottom wall and the left-top walls have lid velocities. The controlling dimensionless equations are numerically solved by the finite volume method through the SIMPLE technique. The varied parameters are scaled as a partial heat length (B: 0.2 to 0.8), heat generation/absorption coefficient (Q: − 2 to 2), thermal radiation parameter (R d : 0–5), Hartmann number (Ha: 0–50), the porosity parameter (ε: 0.4–0.9), inter-phase heat transfer coefficient (H *: 0–5000), the volume fraction of a hybrid nanofluid (ϕ: 0–0.1), modified conductivity ratio (k r : 0.01–100), Darcy parameter $$\left(Da: 1{0}^{-1}\,\mathrm{ to }\,1{0}^{-5}\right)$$ D a : 1 0 - 1 to 1 0 - 5 , and the position of a heat source (D: 0.3–0.7). The major findings reveal that the length and position of the heater are effective in improving the nanofluid movements and heat transfer within a wavy cavity. The isotherms of a solid part are significantly altered by the variations on $$Q$$ Q , $${R}_{d}$$ R d , $${H}^{*}$$ H ∗ and $${k}_{r}$$ k r . Increasing the heat generation/absorption coefficient and thermal radiation parameter is improving the isotherms of a solid phase. Expanding in the porous parameter $$\varepsilon$$ ε enhances the heat transfer of the fluid/solid phases. |
format |
article |
author |
Zehba Raizah Abdelraheem M. Aly Noura Alsedais Mohamed Ahmed Mansour |
author_facet |
Zehba Raizah Abdelraheem M. Aly Noura Alsedais Mohamed Ahmed Mansour |
author_sort |
Zehba Raizah |
title |
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
title_short |
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
title_full |
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
title_fullStr |
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
title_full_unstemmed |
MHD mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
title_sort |
mhd mixed convection of hybrid nanofluid in a wavy porous cavity employing local thermal non-equilibrium condition |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/54f0008dfb814f1f9b7efdbdd9f4ae20 |
work_keys_str_mv |
AT zehbaraizah mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition AT abdelraheemmaly mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition AT nouraalsedais mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition AT mohamedahmedmansour mhdmixedconvectionofhybridnanofluidinawavyporouscavityemployinglocalthermalnonequilibriumcondition |
_version_ |
1718377264904667136 |