CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile
Abstract Bacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A gen...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54f5cc4053574dd1b43cd14fc2b17176 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54f5cc4053574dd1b43cd14fc2b17176 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54f5cc4053574dd1b43cd14fc2b171762021-12-02T18:03:27ZCD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile10.1038/s41598-021-86878-92045-2322https://doaj.org/article/54f5cc4053574dd1b43cd14fc2b171762021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86878-9https://doaj.org/toc/2045-2322Abstract Bacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment.Diogo MartinsMichael A. DiCandiaAristides L. MendesDaniela WetzelShonna M. McBrideAdriano O. HenriquesMónica SerranoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Diogo Martins Michael A. DiCandia Aristides L. Mendes Daniela Wetzel Shonna M. McBride Adriano O. Henriques Mónica Serrano CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
description |
Abstract Bacteria that reside in the gastrointestinal tract of healthy humans are essential for our health, sustenance and well-being. About 50–60% of those bacteria have the ability to produce resilient spores that are important for the life cycle in the gut and for host-to-host transmission. A genomic signature for sporulation in the human intestine was recently described, which spans both commensals and pathogens such as Clostridioides difficile and contains several genes of unknown function. We report on the characterization of a signature gene, CD25890, which, as we show is involved in the control of sporulation initiation in C. difficile under certain nutritional conditions. Spo0A is the main regulatory protein controlling entry into sporulation and we show that an in-frame deletion of CD25890 results in increased expression of spo0A per cell and increased sporulation. The effect of CD25890 on spo0A is likely indirect and mediated through repression of the sinRR´ operon. Deletion of the CD25890 gene, however, does not alter the expression of the genes coding for the cytotoxins or the genes involved in biofilm formation. Our results suggest that CD25890 acts to modulate sporulation in response to the nutrients present in the environment. |
format |
article |
author |
Diogo Martins Michael A. DiCandia Aristides L. Mendes Daniela Wetzel Shonna M. McBride Adriano O. Henriques Mónica Serrano |
author_facet |
Diogo Martins Michael A. DiCandia Aristides L. Mendes Daniela Wetzel Shonna M. McBride Adriano O. Henriques Mónica Serrano |
author_sort |
Diogo Martins |
title |
CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
title_short |
CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
title_full |
CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
title_fullStr |
CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
title_full_unstemmed |
CD25890, a conserved protein that modulates sporulation initiation in Clostridioides difficile |
title_sort |
cd25890, a conserved protein that modulates sporulation initiation in clostridioides difficile |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/54f5cc4053574dd1b43cd14fc2b17176 |
work_keys_str_mv |
AT diogomartins cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT michaeladicandia cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT aristideslmendes cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT danielawetzel cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT shonnammcbride cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT adrianoohenriques cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile AT monicaserrano cd25890aconservedproteinthatmodulatessporulationinitiationinclostridioidesdifficile |
_version_ |
1718378687443763200 |