Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54f7a10e954145e38407819c041b1309 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:54f7a10e954145e38407819c041b1309 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:54f7a10e954145e38407819c041b13092021-12-02T14:40:42ZCross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction10.1038/s41467-020-19551-w2041-1723https://doaj.org/article/54f7a10e954145e38407819c041b13092020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19551-whttps://doaj.org/toc/2041-1723Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six independent health systems.Xing SongAlan S. L. YuJohn A. KellumLemuel R. WaitmanMichael E. MathenySteven Q. SimpsonYong HuMei LiuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Xing Song Alan S. L. Yu John A. Kellum Lemuel R. Waitman Michael E. Matheny Steven Q. Simpson Yong Hu Mei Liu Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
description |
Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six independent health systems. |
format |
article |
author |
Xing Song Alan S. L. Yu John A. Kellum Lemuel R. Waitman Michael E. Matheny Steven Q. Simpson Yong Hu Mei Liu |
author_facet |
Xing Song Alan S. L. Yu John A. Kellum Lemuel R. Waitman Michael E. Matheny Steven Q. Simpson Yong Hu Mei Liu |
author_sort |
Xing Song |
title |
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
title_short |
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
title_full |
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
title_fullStr |
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
title_full_unstemmed |
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
title_sort |
cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/54f7a10e954145e38407819c041b1309 |
work_keys_str_mv |
AT xingsong crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT alanslyu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT johnakellum crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT lemuelrwaitman crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT michaelematheny crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT stevenqsimpson crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT yonghu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction AT meiliu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction |
_version_ |
1718390174063263744 |