Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction

Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xing Song, Alan S. L. Yu, John A. Kellum, Lemuel R. Waitman, Michael E. Matheny, Steven Q. Simpson, Yong Hu, Mei Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/54f7a10e954145e38407819c041b1309
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54f7a10e954145e38407819c041b1309
record_format dspace
spelling oai:doaj.org-article:54f7a10e954145e38407819c041b13092021-12-02T14:40:42ZCross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction10.1038/s41467-020-19551-w2041-1723https://doaj.org/article/54f7a10e954145e38407819c041b13092020-11-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-19551-whttps://doaj.org/toc/2041-1723Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six independent health systems.Xing SongAlan S. L. YuJohn A. KellumLemuel R. WaitmanMichael E. MathenySteven Q. SimpsonYong HuMei LiuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Xing Song
Alan S. L. Yu
John A. Kellum
Lemuel R. Waitman
Michael E. Matheny
Steven Q. Simpson
Yong Hu
Mei Liu
Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
description Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six independent health systems.
format article
author Xing Song
Alan S. L. Yu
John A. Kellum
Lemuel R. Waitman
Michael E. Matheny
Steven Q. Simpson
Yong Hu
Mei Liu
author_facet Xing Song
Alan S. L. Yu
John A. Kellum
Lemuel R. Waitman
Michael E. Matheny
Steven Q. Simpson
Yong Hu
Mei Liu
author_sort Xing Song
title Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
title_short Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
title_full Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
title_fullStr Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
title_full_unstemmed Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
title_sort cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/54f7a10e954145e38407819c041b1309
work_keys_str_mv AT xingsong crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT alanslyu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT johnakellum crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT lemuelrwaitman crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT michaelematheny crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT stevenqsimpson crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT yonghu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
AT meiliu crosssitetransportabilityofanexplainableartificialintelligencemodelforacutekidneyinjuryprediction
_version_ 1718390174063263744