Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction
Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six...
Guardado en:
Autores principales: | Xing Song, Alan S. L. Yu, John A. Kellum, Lemuel R. Waitman, Michael E. Matheny, Steven Q. Simpson, Yong Hu, Mei Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54f7a10e954145e38407819c041b1309 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Clinical factors associated with rapid treatment of sepsis.
por: Xing Song, et al.
Publicado: (2021) -
Explainable artificial intelligence model to predict acute critical illness from electronic health records
por: Simon Meyer Lauritsen, et al.
Publicado: (2020) -
An Explainable Artificial Intelligence Model for Detecting Xenophobic Tweets
por: Gabriel Ichcanziho Pérez-Landa, et al.
Publicado: (2021) -
Untangling hybrid hydrological models with explainable artificial intelligence
por: Daniel Althoff, et al.
Publicado: (2021) -
Effect of ondansetron on reducing ICU mortality in patients with acute kidney injury
por: Xiaojiang Guo, et al.
Publicado: (2021)