Cross-site transportability of an explainable artificial intelligence model for acute kidney injury prediction

Artificial intelligence (AI) has demonstrated promise in predicting acutekidney injury (AKI), however, clinical adoption of these models requires interpretability and transportability across sites. Here, the authors develop an AKI prediction model and a measure for model transportability across six...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Xing Song, Alan S. L. Yu, John A. Kellum, Lemuel R. Waitman, Michael E. Matheny, Steven Q. Simpson, Yong Hu, Mei Liu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/54f7a10e954145e38407819c041b1309
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares