Prediction and real-time compensation of qubit decoherence via machine learning

Control engineering techniques are promising for realizing stable quantum systems to counter their extreme fragility. Here the authors use techniques from machine learning to enable real-time feedback suppression of decoherence in a trapped ion qubit by predicting its future stochastic evolution.

Guardado en:
Detalles Bibliográficos
Autores principales: Sandeep Mavadia, Virginia Frey, Jarrah Sastrawan, Stephen Dona, Michael J. Biercuk
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
Q
Acceso en línea:https://doaj.org/article/54fb8f67b9664aab884a9c4affc37390
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:54fb8f67b9664aab884a9c4affc37390
record_format dspace
spelling oai:doaj.org-article:54fb8f67b9664aab884a9c4affc373902021-12-02T15:38:56ZPrediction and real-time compensation of qubit decoherence via machine learning10.1038/ncomms141062041-1723https://doaj.org/article/54fb8f67b9664aab884a9c4affc373902017-01-01T00:00:00Zhttps://doi.org/10.1038/ncomms14106https://doaj.org/toc/2041-1723Control engineering techniques are promising for realizing stable quantum systems to counter their extreme fragility. Here the authors use techniques from machine learning to enable real-time feedback suppression of decoherence in a trapped ion qubit by predicting its future stochastic evolution.Sandeep MavadiaVirginia FreyJarrah SastrawanStephen DonaMichael J. BiercukNature PortfolioarticleScienceQENNature Communications, Vol 8, Iss 1, Pp 1-6 (2017)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Sandeep Mavadia
Virginia Frey
Jarrah Sastrawan
Stephen Dona
Michael J. Biercuk
Prediction and real-time compensation of qubit decoherence via machine learning
description Control engineering techniques are promising for realizing stable quantum systems to counter their extreme fragility. Here the authors use techniques from machine learning to enable real-time feedback suppression of decoherence in a trapped ion qubit by predicting its future stochastic evolution.
format article
author Sandeep Mavadia
Virginia Frey
Jarrah Sastrawan
Stephen Dona
Michael J. Biercuk
author_facet Sandeep Mavadia
Virginia Frey
Jarrah Sastrawan
Stephen Dona
Michael J. Biercuk
author_sort Sandeep Mavadia
title Prediction and real-time compensation of qubit decoherence via machine learning
title_short Prediction and real-time compensation of qubit decoherence via machine learning
title_full Prediction and real-time compensation of qubit decoherence via machine learning
title_fullStr Prediction and real-time compensation of qubit decoherence via machine learning
title_full_unstemmed Prediction and real-time compensation of qubit decoherence via machine learning
title_sort prediction and real-time compensation of qubit decoherence via machine learning
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/54fb8f67b9664aab884a9c4affc37390
work_keys_str_mv AT sandeepmavadia predictionandrealtimecompensationofqubitdecoherenceviamachinelearning
AT virginiafrey predictionandrealtimecompensationofqubitdecoherenceviamachinelearning
AT jarrahsastrawan predictionandrealtimecompensationofqubitdecoherenceviamachinelearning
AT stephendona predictionandrealtimecompensationofqubitdecoherenceviamachinelearning
AT michaeljbiercuk predictionandrealtimecompensationofqubitdecoherenceviamachinelearning
_version_ 1718386048339279872