Prediction and real-time compensation of qubit decoherence via machine learning
Control engineering techniques are promising for realizing stable quantum systems to counter their extreme fragility. Here the authors use techniques from machine learning to enable real-time feedback suppression of decoherence in a trapped ion qubit by predicting its future stochastic evolution.
Guardado en:
Autores principales: | Sandeep Mavadia, Virginia Frey, Jarrah Sastrawan, Stephen Dona, Michael J. Biercuk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/54fb8f67b9664aab884a9c4affc37390 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A decoherence-free subspace in a charge quadrupole qubit
por: Mark Friesen, et al.
Publicado: (2017) -
Characterizing decoherence rates of a superconducting qubit by direct microwave scattering
por: Yong Lu, et al.
Publicado: (2021) -
Procedure via cross-Kerr nonlinearities for encoding single logical qubit information onto four-photon decoherence-free states
por: Jino Heo, et al.
Publicado: (2021) -
Quantifying Decoherence in Attosecond Metrology
por: C. Bourassin-Bouchet, et al.
Publicado: (2020) -
Infrared-safe scattering without photon vacuum transitions and time-dependent decoherence
por: Dominik Neuenfeld
Publicado: (2021)