Phase transitions and stability of dynamical processes on hypergraphs
A general theory for dynamical processes in higher-order systems is still missing. Here, the authors provide a general mathematical framework based on linear stability analysis that allows to assess the stability of classes of processes on arbitrary hypergraphs.
Guardado en:
Autores principales: | Guilherme Ferraz de Arruda, Michele Tizzani, Yamir Moreno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55138b7280324bb78f27748082c1b1c7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hypergraph reconstruction from network data
por: Jean-Gabriel Young, et al.
Publicado: (2021) -
Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
Detecting informative higher-order interactions in statistically validated hypergraphs
por: Federico Musciotto, et al.
Publicado: (2021) -
Publisher Correction: Node and edge nonlinear eigenvector centrality for hypergraphs
por: Francesco Tudisco, et al.
Publicado: (2021) -
How choosing random-walk model and network representation matters for flow-based community detection in hypergraphs
por: Anton Eriksson, et al.
Publicado: (2021)