Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
Chest radiography is a relatively cheap, widely available medical procedure that conveys key information for making diagnostic decisions. Chest X-rays are frequently used in the diagnosis of respiratory diseases such as pneumonia or COVID-19. In this paper, we propose a self-supervised deep neural n...
Guardado en:
Autores principales: | Matej Gazda, Jan Plavka, Jakub Gazda, Peter Drotar |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55228cfe99e54f56b099ecb78b7fa61b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
por: Giorgio Ciano, et al.
Publicado: (2021) -
Pneumonia detection in chest X-ray images using compound scaled deep learning model
por: Mohammad Farukh Hashmi, et al.
Publicado: (2021) -
An Interaction-Based Convolutional Neural Network (ICNN) Toward a Better Understanding of COVID-19 X-ray Images
por: Shaw-Hwa Lo, et al.
Publicado: (2021) -
A Deep-Learning Approach to Detect Fiducials in Planar X-Ray Images for Undistortion of Conventional C-Arm Images
por: Alvarez-Gomez Julio, et al.
Publicado: (2020) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
por: Leiyu Chen, et al.
Publicado: (2021)