Self-Supervised Deep Convolutional Neural Network for Chest X-Ray Classification
Chest radiography is a relatively cheap, widely available medical procedure that conveys key information for making diagnostic decisions. Chest X-rays are frequently used in the diagnosis of respiratory diseases such as pneumonia or COVID-19. In this paper, we propose a self-supervised deep neural n...
Enregistré dans:
Auteurs principaux: | Matej Gazda, Jan Plavka, Jakub Gazda, Peter Drotar |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/55228cfe99e54f56b099ecb78b7fa61b |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Multi-Stage GAN for Multi-Organ Chest X-ray Image Generation and Segmentation
par: Giorgio Ciano, et autres
Publié: (2021) -
Pneumonia detection in chest X-ray images using compound scaled deep learning model
par: Mohammad Farukh Hashmi, et autres
Publié: (2021) -
An Interaction-Based Convolutional Neural Network (ICNN) Toward a Better Understanding of COVID-19 X-ray Images
par: Shaw-Hwa Lo, et autres
Publié: (2021) -
A Deep-Learning Approach to Detect Fiducials in Planar X-Ray Images for Undistortion of Conventional C-Arm Images
par: Alvarez-Gomez Julio, et autres
Publié: (2020) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
par: Leiyu Chen, et autres
Publié: (2021)