Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin
Abstract To effectively manage a watershed and successfully restore a river system, it is very important to assess the toxicity of sediments and identify the substances causing the toxicity. Seventy-six sediments collected in the Haihe River Basin (HRB) in China were screened for acute toxicity usin...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/553565f4e98741b6802772ea8fc2b2d4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:553565f4e98741b6802772ea8fc2b2d4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:553565f4e98741b6802772ea8fc2b2d42021-12-02T12:32:25ZUsing Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin10.1038/s41598-017-01631-52045-2322https://doaj.org/article/553565f4e98741b6802772ea8fc2b2d42017-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-01631-5https://doaj.org/toc/2045-2322Abstract To effectively manage a watershed and successfully restore a river system, it is very important to assess the toxicity of sediments and identify the substances causing the toxicity. Seventy-six sediments collected in the Haihe River Basin (HRB) in China were screened for acute toxicity using Chironomus dilutus. We found that sediments from more than 32% of sampling sites, distributed mainly in the Ziya tributary and along the estuary, were acutely toxic to midges. A toxicity identification evaluation showed that the toxicity of the sediment samples was mainly from ammonia nitrogen, metals, and organics. Calculations of the toxic unit (TU) showed that ammonia and metals contributed more to sediment toxicity than organics, and that PAHs may have contributed in other tributaries. A modified three-step sequential extraction procedure to assess the bioavailability of the metals indicated that the toxicity from metals was mainly from Cd and Zn. This is one of the first studies in which this type of approach has been applied to directly connect contaminants with ecological effects in the HRB.Xiaolei ZhuBaoqing ShanWenzhong TangChao ZhangNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Xiaolei Zhu Baoqing Shan Wenzhong Tang Chao Zhang Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
description |
Abstract To effectively manage a watershed and successfully restore a river system, it is very important to assess the toxicity of sediments and identify the substances causing the toxicity. Seventy-six sediments collected in the Haihe River Basin (HRB) in China were screened for acute toxicity using Chironomus dilutus. We found that sediments from more than 32% of sampling sites, distributed mainly in the Ziya tributary and along the estuary, were acutely toxic to midges. A toxicity identification evaluation showed that the toxicity of the sediment samples was mainly from ammonia nitrogen, metals, and organics. Calculations of the toxic unit (TU) showed that ammonia and metals contributed more to sediment toxicity than organics, and that PAHs may have contributed in other tributaries. A modified three-step sequential extraction procedure to assess the bioavailability of the metals indicated that the toxicity from metals was mainly from Cd and Zn. This is one of the first studies in which this type of approach has been applied to directly connect contaminants with ecological effects in the HRB. |
format |
article |
author |
Xiaolei Zhu Baoqing Shan Wenzhong Tang Chao Zhang |
author_facet |
Xiaolei Zhu Baoqing Shan Wenzhong Tang Chao Zhang |
author_sort |
Xiaolei Zhu |
title |
Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
title_short |
Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
title_full |
Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
title_fullStr |
Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
title_full_unstemmed |
Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin |
title_sort |
using chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the haihe river basin |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/553565f4e98741b6802772ea8fc2b2d4 |
work_keys_str_mv |
AT xiaoleizhu usingchironomusdilutustoidentifytoxicantsandevaluatetheecotoxicityofsedimentsinthehaiheriverbasin AT baoqingshan usingchironomusdilutustoidentifytoxicantsandevaluatetheecotoxicityofsedimentsinthehaiheriverbasin AT wenzhongtang usingchironomusdilutustoidentifytoxicantsandevaluatetheecotoxicityofsedimentsinthehaiheriverbasin AT chaozhang usingchironomusdilutustoidentifytoxicantsandevaluatetheecotoxicityofsedimentsinthehaiheriverbasin |
_version_ |
1718394093945487360 |