Applying laboratory methods for durability assessment of vitrified material to archaeological samples

Abstract Laboratory testing used to assess the long-term chemical durability of nuclear waste forms may not be applicable to disposal because the accelerated conditions may not represent disposal conditions. To address this, we examine the corrosion of vitrified archeological materials excavated fro...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lorena Nava-Farias, James J. Neeway, Michael J. Schweiger, José Marcial, Nathan L. Canfield, Carolyn I. Pearce, David K. Peeler, Edward P. Vicenzi, David S. Kosson, Rossane C. Delapp, John S. McCloy, Sam A. Walling, Clare L. Thorpe, Claire L. Corkhill, Russell J. Hand, Rolf Sjöblom, Albert A. Kruger
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/553fd3b92c854bda8ad2cdd413337ed6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:553fd3b92c854bda8ad2cdd413337ed6
record_format dspace
spelling oai:doaj.org-article:553fd3b92c854bda8ad2cdd413337ed62021-11-14T12:07:49ZApplying laboratory methods for durability assessment of vitrified material to archaeological samples10.1038/s41529-021-00204-22397-2106https://doaj.org/article/553fd3b92c854bda8ad2cdd413337ed62021-11-01T00:00:00Zhttps://doi.org/10.1038/s41529-021-00204-2https://doaj.org/toc/2397-2106Abstract Laboratory testing used to assess the long-term chemical durability of nuclear waste forms may not be applicable to disposal because the accelerated conditions may not represent disposal conditions. To address this, we examine the corrosion of vitrified archeological materials excavated from the near surface of a ~1500-year old Iron Age Swedish hillfort, Broborg, as an analog for the disposal of vitrified nuclear waste. We compare characterized site samples with corrosion characteristics generated by standard laboratory durability test methods including the product consistency test (PCT), the vapor hydration test (VHT), and the EPA Method 1313 test. Results show that the surficial layer of the Broborg samples resulting from VHT displays some similarities to the morphology of the surficial layer formed over longer timescales in the environment. This work provides improved understanding of long-term glass corrosion behavior in terms of the thickness, morphology, and chemistry of the surficial features that are formed.Lorena Nava-FariasJames J. NeewayMichael J. SchweigerJosé MarcialNathan L. CanfieldCarolyn I. PearceDavid K. PeelerEdward P. VicenziDavid S. KossonRossane C. DelappJohn S. McCloySam A. WallingClare L. ThorpeClaire L. CorkhillRussell J. HandRolf SjöblomAlbert A. KrugerNature PortfolioarticleMaterials of engineering and construction. Mechanics of materialsTA401-492ENnpj Materials Degradation, Vol 5, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Materials of engineering and construction. Mechanics of materials
TA401-492
spellingShingle Materials of engineering and construction. Mechanics of materials
TA401-492
Lorena Nava-Farias
James J. Neeway
Michael J. Schweiger
José Marcial
Nathan L. Canfield
Carolyn I. Pearce
David K. Peeler
Edward P. Vicenzi
David S. Kosson
Rossane C. Delapp
John S. McCloy
Sam A. Walling
Clare L. Thorpe
Claire L. Corkhill
Russell J. Hand
Rolf Sjöblom
Albert A. Kruger
Applying laboratory methods for durability assessment of vitrified material to archaeological samples
description Abstract Laboratory testing used to assess the long-term chemical durability of nuclear waste forms may not be applicable to disposal because the accelerated conditions may not represent disposal conditions. To address this, we examine the corrosion of vitrified archeological materials excavated from the near surface of a ~1500-year old Iron Age Swedish hillfort, Broborg, as an analog for the disposal of vitrified nuclear waste. We compare characterized site samples with corrosion characteristics generated by standard laboratory durability test methods including the product consistency test (PCT), the vapor hydration test (VHT), and the EPA Method 1313 test. Results show that the surficial layer of the Broborg samples resulting from VHT displays some similarities to the morphology of the surficial layer formed over longer timescales in the environment. This work provides improved understanding of long-term glass corrosion behavior in terms of the thickness, morphology, and chemistry of the surficial features that are formed.
format article
author Lorena Nava-Farias
James J. Neeway
Michael J. Schweiger
José Marcial
Nathan L. Canfield
Carolyn I. Pearce
David K. Peeler
Edward P. Vicenzi
David S. Kosson
Rossane C. Delapp
John S. McCloy
Sam A. Walling
Clare L. Thorpe
Claire L. Corkhill
Russell J. Hand
Rolf Sjöblom
Albert A. Kruger
author_facet Lorena Nava-Farias
James J. Neeway
Michael J. Schweiger
José Marcial
Nathan L. Canfield
Carolyn I. Pearce
David K. Peeler
Edward P. Vicenzi
David S. Kosson
Rossane C. Delapp
John S. McCloy
Sam A. Walling
Clare L. Thorpe
Claire L. Corkhill
Russell J. Hand
Rolf Sjöblom
Albert A. Kruger
author_sort Lorena Nava-Farias
title Applying laboratory methods for durability assessment of vitrified material to archaeological samples
title_short Applying laboratory methods for durability assessment of vitrified material to archaeological samples
title_full Applying laboratory methods for durability assessment of vitrified material to archaeological samples
title_fullStr Applying laboratory methods for durability assessment of vitrified material to archaeological samples
title_full_unstemmed Applying laboratory methods for durability assessment of vitrified material to archaeological samples
title_sort applying laboratory methods for durability assessment of vitrified material to archaeological samples
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/553fd3b92c854bda8ad2cdd413337ed6
work_keys_str_mv AT lorenanavafarias applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT jamesjneeway applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT michaeljschweiger applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT josemarcial applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT nathanlcanfield applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT carolynipearce applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT davidkpeeler applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT edwardpvicenzi applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT davidskosson applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT rossanecdelapp applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT johnsmccloy applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT samawalling applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT clarelthorpe applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT clairelcorkhill applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT russelljhand applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT rolfsjoblom applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
AT albertakruger applyinglaboratorymethodsfordurabilityassessmentofvitrifiedmaterialtoarchaeologicalsamples
_version_ 1718429402274988032