Entire functions that share two pairs of small functions

In this paper, we study the unicity of entire functions and their derivatives and obtain the following result: let ff be a non-constant entire function, let a1{a}_{1}, a2{a}_{2}, b1{b}_{1}, and b2{b}_{2} be four small functions of ff such that a1≢b1{a}_{1}\not\equiv {b}_{1}, a2≢b2{a}_{2}\not\equiv {...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Huang Xiaohuang, Deng Bingmao, Fang Mingliang
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://doaj.org/article/554f05690f544e6b8d37b1edfb93d443
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:554f05690f544e6b8d37b1edfb93d443
record_format dspace
spelling oai:doaj.org-article:554f05690f544e6b8d37b1edfb93d4432021-12-05T14:10:52ZEntire functions that share two pairs of small functions2391-545510.1515/math-2021-0011https://doaj.org/article/554f05690f544e6b8d37b1edfb93d4432021-05-01T00:00:00Zhttps://doi.org/10.1515/math-2021-0011https://doaj.org/toc/2391-5455In this paper, we study the unicity of entire functions and their derivatives and obtain the following result: let ff be a non-constant entire function, let a1{a}_{1}, a2{a}_{2}, b1{b}_{1}, and b2{b}_{2} be four small functions of ff such that a1≢b1{a}_{1}\not\equiv {b}_{1}, a2≢b2{a}_{2}\not\equiv {b}_{2}, and none of them is identically equal to ∞\infty . If ff and f(k){f}^{\left(k)} share (a1,a2)\left({a}_{1},{a}_{2}) CM and share (b1,b2)\left({b}_{1},{b}_{2}) IM, then (a2−b2)f−(a1−b1)f(k)≡a2b1−a1b2\left({a}_{2}-{b}_{2})f-\left({a}_{1}-{b}_{1}){f}^{\left(k)}\equiv {a}_{2}{b}_{1}-{a}_{1}{b}_{2}. This extends the result due to Li and Yang [Value sharing of an entire function and its derivatives, J. Math. Soc. Japan. 51 (1999), no. 7, 781–799].Huang XiaohuangDeng BingmaoFang MingliangDe Gruyterarticleunicityentire functionsderivativessmall functions30d3539a32MathematicsQA1-939ENOpen Mathematics, Vol 19, Iss 1, Pp 144-156 (2021)
institution DOAJ
collection DOAJ
language EN
topic unicity
entire functions
derivatives
small functions
30d35
39a32
Mathematics
QA1-939
spellingShingle unicity
entire functions
derivatives
small functions
30d35
39a32
Mathematics
QA1-939
Huang Xiaohuang
Deng Bingmao
Fang Mingliang
Entire functions that share two pairs of small functions
description In this paper, we study the unicity of entire functions and their derivatives and obtain the following result: let ff be a non-constant entire function, let a1{a}_{1}, a2{a}_{2}, b1{b}_{1}, and b2{b}_{2} be four small functions of ff such that a1≢b1{a}_{1}\not\equiv {b}_{1}, a2≢b2{a}_{2}\not\equiv {b}_{2}, and none of them is identically equal to ∞\infty . If ff and f(k){f}^{\left(k)} share (a1,a2)\left({a}_{1},{a}_{2}) CM and share (b1,b2)\left({b}_{1},{b}_{2}) IM, then (a2−b2)f−(a1−b1)f(k)≡a2b1−a1b2\left({a}_{2}-{b}_{2})f-\left({a}_{1}-{b}_{1}){f}^{\left(k)}\equiv {a}_{2}{b}_{1}-{a}_{1}{b}_{2}. This extends the result due to Li and Yang [Value sharing of an entire function and its derivatives, J. Math. Soc. Japan. 51 (1999), no. 7, 781–799].
format article
author Huang Xiaohuang
Deng Bingmao
Fang Mingliang
author_facet Huang Xiaohuang
Deng Bingmao
Fang Mingliang
author_sort Huang Xiaohuang
title Entire functions that share two pairs of small functions
title_short Entire functions that share two pairs of small functions
title_full Entire functions that share two pairs of small functions
title_fullStr Entire functions that share two pairs of small functions
title_full_unstemmed Entire functions that share two pairs of small functions
title_sort entire functions that share two pairs of small functions
publisher De Gruyter
publishDate 2021
url https://doaj.org/article/554f05690f544e6b8d37b1edfb93d443
work_keys_str_mv AT huangxiaohuang entirefunctionsthatsharetwopairsofsmallfunctions
AT dengbingmao entirefunctionsthatsharetwopairsofsmallfunctions
AT fangmingliang entirefunctionsthatsharetwopairsofsmallfunctions
_version_ 1718371644397846528