Reconstruction of All-Weather Daytime and Nighttime MODIS Aqua-Terra Land Surface Temperature Products Using an XGBoost Approach
Generating spatiotemporally continuous land surface temperature (LST) data is in great demand for hydrology, meteorology, ecology, environmental studies, etc. However, the thermal infrared (TIR)-based LST measurements are prone to cloud contamination with missing pixels. To repair the missing pixels...
Guardado en:
Autores principales: | Weiwei Tan, Chunzhu Wei, Yang Lu, Desheng Xue |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55745c8341e749a5a73bd9e8e12a274c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
VERTICAL TEMPERATURE AND MOISTURE STRUCTURE IN LOWER ATMOSPHERE RETRIVED FROM TERRA/MODIS
por: Kim,Y. S, et al.
Publicado: (2004) -
Airbnb rental price modeling based on Latent Dirichlet Allocation and MESF-XGBoost composite model
por: Md Didarul Islam, et al.
Publicado: (2022) -
Comparative Analysis of SVM, XGBoost and Neural Network on Hate Speech Classification
por: Suwarno Liang
Publicado: (2021) -
MODY2 diagnostic issues in adults
por: Irina V. Kononenko, et al.
Publicado: (2019) -
A Data-Driven Method for Power System Transient Instability Mode Identification Based on Knowledge Discovery and XGBoost Algorithm
por: Neng Zhang, et al.
Publicado: (2021)