Path calculation, technology and opportunities in dry fiber winding: a review
Filament winding is a well-established process to manufacture composite parts. With the advancement of automation and process control technologies, the winding of dry fibers to manufacture a preform for liquid composite molding (LCM) processes is feasible. This study presents an overview of dry fibe...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Taylor & Francis Group
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/5575315e29924cb3ad3b4cbdca8e9f58 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Filament winding is a well-established process to manufacture composite parts. With the advancement of automation and process control technologies, the winding of dry fibers to manufacture a preform for liquid composite molding (LCM) processes is feasible. This study presents an overview of dry fiber winding and explains the most important process aspects. It addresses the application of differential geometry to the winding technique. The formulation of geodesic and non-geodesic equations and their solution is discussed. Besides, non-analytical methods to generate winding trajectories are introduced. The influence of the friction coefficient on process-related parameters is covered. Considering technology trends the study gives an overview of developments in winding systems and equipment. Novel research areas can be identified in the development of new path generation methods, considering detailed friction influences. Fiber depositing and guidance systems must also be adapted. Alternations of the process parameters and their influence on subsequent impregnation processes must be investigated. |
---|