Low-dimensional learned feature spaces quantify individual and group differences in vocal repertoires
Increases in the scale and complexity of behavioral data pose an increasing challenge for data analysis. A common strategy involves replacing entire behaviors with small numbers of handpicked, domain-specific features, but this approach suffers from several crucial limitations. For example, handpick...
Guardado en:
Autores principales: | Jack Goffinet, Samuel Brudner, Richard Mooney, John Pearson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
eLife Sciences Publications Ltd
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55763c7b25704292b75e302878ae32a4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A light- and electron microscopic study of primordial germ cells in the zebra fish (Danio rerio)
por: Deniz Koç,Nazan, et al.
Publicado: (2012) -
Main characteristics of the Lake Pleshcheyevo population of Dreissena polymorpha (Bivalvia, Dreissenidae)
por: Ekaterina G. Pryanichnikova, et al.
Publicado: (2018) -
Impact of the clam Arca zebra artisanal fishery upon the population of the neogastropod Voluta musica in eastern Venezuela
por: Peralta,Ana Carolina, et al.
Publicado: (2016) -
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Multi-Run Concrete Autoencoder to Identify Prognostic lncRNAs for 12 Cancers
por: Abdullah Al Mamun, et al.
Publicado: (2021)