A Computational Model for Estimating the Compressive Strength of Mortars Admixed with Mineral Materials

In this paper, a new computational model is presented to estimate the compressive strength of mortars admixed with Microsilica and a mineral material namely Wollastonite. For this purpose, an equation with fourteen unknown parameters was considered based on a large experimental data, which were publ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hosein Naderpour, Masoomeh Mirrashid
Formato: article
Lenguaje:EN
Publicado: Pouyan Press 2018
Materias:
Acceso en línea:https://doaj.org/article/5578b63555d3495ca9f0596ccc9aa690
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, a new computational model is presented to estimate the compressive strength of mortars admixed with Microsilica and a mineral material namely Wollastonite. For this purpose, an equation with fourteen unknown parameters was considered based on a large experimental data, which were published in the literature. The model used five independent parameters including the amounts of the Microsilica, cement, Wollastonite, water and also the age of the specimens (day). For calculating the unknown parameters, the author used artificial neural network method and divided the experimental database into three parts for three phases of the train, validate and test to tune the coefficients of the considered equation. After determining the coefficients, the final equation was validated and tested to estimate the compressive strength of the considered mortars. The results indicated that the proposed equation of this research could be able to determine the compressive strength of mortars admixed with Wollastonite.