Machining feature recognition based on deep neural networks to support tight integration with 3D CAD systems
Abstract Recently, studies applying deep learning technology to recognize the machining feature of three-dimensional (3D) computer-aided design (CAD) models are increasing. Since the direct utilization of boundary representation (B-rep) models as input data for neural networks in terms of data struc...
Guardado en:
Autores principales: | Changmo Yeo, Byung Chul Kim, Sanguk Cheon, Jinwon Lee, Duhwan Mun |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/557a425a39c54308ac5e8ef538e14b62 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep Learning-Based Method to Recognize Line Objects and Flow Arrows from Image-Format Piping and Instrumentation Diagrams for Digitization
por: Yoochan Moon, et al.
Publicado: (2021) -
MBD Based 3D CAD Model Automatic Feature Recognition and Similarity Evaluation
por: Shuhui Ding, et al.
Publicado: (2021) -
Recognition of Eye-Written Characters Using Deep Neural Network
por: Won-Du Chang, et al.
Publicado: (2021) - CAD/CAM Update
-
Feature-Based Interpretation of the Deep Neural Network
por: Eun-Hun Lee, et al.
Publicado: (2021)