A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>

ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcriptio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Roberto R. Grau, Paula de Oña, Maritta Kunert, Cecilia Leñini, Ramses Gallegos-Monterrosa, Eisha Mhatre, Darío Vileta, Verónica Donato, Theresa Hölscher, Wilhelm Boland, Oscar P. Kuipers, Ákos T. Kovács
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2015
Materias:
Acceso en línea:https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d7
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:557cdd93adf9446d96d4de3806bc87d7
record_format dspace
spelling oai:doaj.org-article:557cdd93adf9446d96d4de3806bc87d72021-11-15T15:41:26ZA Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>10.1128/mBio.00581-152150-7511https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d72015-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00581-15https://doaj.org/toc/2150-7511ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.Roberto R. GrauPaula de OñaMaritta KunertCecilia LeñiniRamses Gallegos-MonterrosaEisha MhatreDarío ViletaVerónica DonatoTheresa HölscherWilhelm BolandOscar P. KuipersÁkos T. KovácsAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 4 (2015)
institution DOAJ
collection DOAJ
language EN
topic Microbiology
QR1-502
spellingShingle Microbiology
QR1-502
Roberto R. Grau
Paula de Oña
Maritta Kunert
Cecilia Leñini
Ramses Gallegos-Monterrosa
Eisha Mhatre
Darío Vileta
Verónica Donato
Theresa Hölscher
Wilhelm Boland
Oscar P. Kuipers
Ákos T. Kovács
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
description ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.
format article
author Roberto R. Grau
Paula de Oña
Maritta Kunert
Cecilia Leñini
Ramses Gallegos-Monterrosa
Eisha Mhatre
Darío Vileta
Verónica Donato
Theresa Hölscher
Wilhelm Boland
Oscar P. Kuipers
Ákos T. Kovács
author_facet Roberto R. Grau
Paula de Oña
Maritta Kunert
Cecilia Leñini
Ramses Gallegos-Monterrosa
Eisha Mhatre
Darío Vileta
Verónica Donato
Theresa Hölscher
Wilhelm Boland
Oscar P. Kuipers
Ákos T. Kovács
author_sort Roberto R. Grau
title A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
title_short A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
title_full A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
title_fullStr A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
title_full_unstemmed A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
title_sort duo of potassium-responsive histidine kinases govern the multicellular destiny of <named-content content-type="genus-species">bacillus subtilis</named-content>
publisher American Society for Microbiology
publishDate 2015
url https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d7
work_keys_str_mv AT robertorgrau aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT pauladeona aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT marittakunert aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT cecilialenini aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT ramsesgallegosmonterrosa aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT eishamhatre aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT dariovileta aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT veronicadonato aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT theresaholscher aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT wilhelmboland aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT oscarpkuipers aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT akostkovacs aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT robertorgrau duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT pauladeona duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT marittakunert duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT cecilialenini duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT ramsesgallegosmonterrosa duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT eishamhatre duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT dariovileta duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT veronicadonato duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT theresaholscher duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT wilhelmboland duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT oscarpkuipers duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
AT akostkovacs duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent
_version_ 1718427703690919936