A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>
ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcriptio...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2015
|
Materias: | |
Acceso en línea: | https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:557cdd93adf9446d96d4de3806bc87d7 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:557cdd93adf9446d96d4de3806bc87d72021-11-15T15:41:26ZA Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content>10.1128/mBio.00581-152150-7511https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d72015-09-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.00581-15https://doaj.org/toc/2150-7511ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness.Roberto R. GrauPaula de OñaMaritta KunertCecilia LeñiniRamses Gallegos-MonterrosaEisha MhatreDarío ViletaVerónica DonatoTheresa HölscherWilhelm BolandOscar P. KuipersÁkos T. KovácsAmerican Society for MicrobiologyarticleMicrobiologyQR1-502ENmBio, Vol 6, Iss 4 (2015) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Microbiology QR1-502 |
spellingShingle |
Microbiology QR1-502 Roberto R. Grau Paula de Oña Maritta Kunert Cecilia Leñini Ramses Gallegos-Monterrosa Eisha Mhatre Darío Vileta Verónica Donato Theresa Hölscher Wilhelm Boland Oscar P. Kuipers Ákos T. Kovács A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
description |
ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. IMPORTANCE Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective decision to move over or stay attached to a surface controlled? Here, we use the model plant-beneficial bacterium Bacillus subtilis to answer this question. Remarkably, we discover that sessile biofilm formation and social sliding motility share the same structural components and the Spo0A regulatory network via sensor kinases, KinB and KinC. Potassium, an inhibitor of KinC-dependent biofilm formation, triggers sliding via a potassium-perceiving cytosolic domain of KinB that resembles the selectivity filter of potassium channels. The spatiotemporal response of these kinases to variable potassium levels and the gradual increase in Spo0A~Pi levels that orchestrates the activation of sliding before biofilm formation shed light on how multicellular behaviors formerly believed to be antagonistic work together to benefit the population fitness. |
format |
article |
author |
Roberto R. Grau Paula de Oña Maritta Kunert Cecilia Leñini Ramses Gallegos-Monterrosa Eisha Mhatre Darío Vileta Verónica Donato Theresa Hölscher Wilhelm Boland Oscar P. Kuipers Ákos T. Kovács |
author_facet |
Roberto R. Grau Paula de Oña Maritta Kunert Cecilia Leñini Ramses Gallegos-Monterrosa Eisha Mhatre Darío Vileta Verónica Donato Theresa Hölscher Wilhelm Boland Oscar P. Kuipers Ákos T. Kovács |
author_sort |
Roberto R. Grau |
title |
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
title_short |
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
title_full |
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
title_fullStr |
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
title_full_unstemmed |
A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of <named-content content-type="genus-species">Bacillus subtilis</named-content> |
title_sort |
duo of potassium-responsive histidine kinases govern the multicellular destiny of <named-content content-type="genus-species">bacillus subtilis</named-content> |
publisher |
American Society for Microbiology |
publishDate |
2015 |
url |
https://doaj.org/article/557cdd93adf9446d96d4de3806bc87d7 |
work_keys_str_mv |
AT robertorgrau aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT pauladeona aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT marittakunert aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT cecilialenini aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT ramsesgallegosmonterrosa aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT eishamhatre aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT dariovileta aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT veronicadonato aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT theresaholscher aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT wilhelmboland aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT oscarpkuipers aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT akostkovacs aduoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT robertorgrau duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT pauladeona duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT marittakunert duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT cecilialenini duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT ramsesgallegosmonterrosa duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT eishamhatre duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT dariovileta duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT veronicadonato duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT theresaholscher duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT wilhelmboland duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT oscarpkuipers duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent AT akostkovacs duoofpotassiumresponsivehistidinekinasesgovernthemulticellulardestinyofnamedcontentcontenttypegenusspeciesbacillussubtilisnamedcontent |
_version_ |
1718427703690919936 |