Optimization of running-in surface morphology parameters based on the AutoML model.
Running-in is an important and relatively complicated process. The surface morphology prior to running-in affects the surface morphology following the running-in process, which in turn influences the friction and wear characteristics of the workpiece. Therefore, the establishment of a model for runn...
Guardado en:
Autores principales: | Guangyuan Ge, Fenfen Liu, Gengpei Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55844fabb77f4f7690a33eecd75facba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Net-Net Auto Machine Learning (AutoML) Prediction of Complex Ecosystems
por: Enrique Barreiro, et al.
Publicado: (2018) -
Investigation of running-in process based on surface roughness parameters, real contact area ratio and tribological properties
por: Horng Jeng-Haur, et al.
Publicado: (2021) -
Research on optimization of perforation parameters for formation fractures based on response surface optimization method.
por: Wei Liu, et al.
Publicado: (2021) -
Robust Parameter Estimation of an Empirical Manoeuvring Model Using Free-Running Model Tests
por: Ana Catarina Costa, et al.
Publicado: (2021) -
Towards ML-Based Diagnostics of Laser–Plasma Interactions
por: Yury Rodimkov, et al.
Publicado: (2021)