Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
The outbreak of coronavirus disease (COVID-19) has affected almost all of the countries of the world, and has had significant social and psychological effects on the population. Nowadays, social media platforms are being used for emotional self-expression towards current events, including the COVID-...
Guardado en:
Autores principales: | Nora Alturayeif, Hamzah Luqman |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55aaa3a11c4b45dcb34f2dae84e69944 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weibo Text Sentiment Analysis Based on BERT and Deep Learning
por: Hongchan Li, et al.
Publicado: (2021) -
Characterisation of COVID-19-Related Tweets in the Croatian Language: Framework Based on the Cro-CoV-cseBERT Model
por: Karlo Babić, et al.
Publicado: (2021) -
Aspect-Based Sentiment Analysis in Hindi Language by Ensembling Pre-Trained mBERT Models
por: Abhilash Pathak, et al.
Publicado: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
por: Ruba Obiedat, et al.
Publicado: (2021) -
Coarse-Grained Sentiment Analysis Berbasis Natural Language Processing – Ulasan Hotel
por: Warnia Nengsih, et al.
Publicado: (2021)