Fine-Grained Sentiment Analysis of Arabic COVID-19 Tweets Using BERT-Based Transformers and Dynamically Weighted Loss Function
The outbreak of coronavirus disease (COVID-19) has affected almost all of the countries of the world, and has had significant social and psychological effects on the population. Nowadays, social media platforms are being used for emotional self-expression towards current events, including the COVID-...
Enregistré dans:
Auteurs principaux: | Nora Alturayeif, Hamzah Luqman |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/55aaa3a11c4b45dcb34f2dae84e69944 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Weibo Text Sentiment Analysis Based on BERT and Deep Learning
par: Hongchan Li, et autres
Publié: (2021) -
Characterisation of COVID-19-Related Tweets in the Croatian Language: Framework Based on the Cro-CoV-cseBERT Model
par: Karlo Babić, et autres
Publié: (2021) -
Aspect-Based Sentiment Analysis in Hindi Language by Ensembling Pre-Trained mBERT Models
par: Abhilash Pathak, et autres
Publié: (2021) -
Arabic Aspect-Based Sentiment Analysis: A Systematic Literature Review
par: Ruba Obiedat, et autres
Publié: (2021) -
Coarse-Grained Sentiment Analysis Berbasis Natural Language Processing – Ulasan Hotel
par: Warnia Nengsih, et autres
Publié: (2021)