Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55af98fa9650477382f27aaea637f1cd |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force of attraction, which has been routinely measured with high precision over the past two decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but at temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo><</mo><mn>50</mn><mrow><mo> </mo><mi mathvariant="normal">K</mi></mrow><mo>,</mo></mrow></semantics></math></inline-formula> friction increases sharply. The calculations have been carried out in the framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with perfect crystal lattices and without defects, van der Waals friction force is shown to increase with decreasing temperature as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>. In the presence of residual resistance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> of the metal, a plateau is formed on the temperature dependence of the friction force at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula> with a height proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub><msup><mrow></mrow><mrow><mo>−</mo><mn>0.8</mn></mrow></msup></mrow></semantics></math></inline-formula>. Another important finding is the weak force-distance dependence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mi>a</mi><mrow><mo>−</mo><mi>q</mi></mrow></msup></mrow></semantics></math></inline-formula> (with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>). The absolute values of the friction forces are achievable for measurements in AFM-based experiments. |
---|