Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion

This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: George Dedkov
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/55af98fa9650477382f27aaea637f1cd
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:55af98fa9650477382f27aaea637f1cd
record_format dspace
spelling oai:doaj.org-article:55af98fa9650477382f27aaea637f1cd2021-11-25T19:09:41ZPuzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion10.3390/universe71104272218-1997https://doaj.org/article/55af98fa9650477382f27aaea637f1cd2021-11-01T00:00:00Zhttps://www.mdpi.com/2218-1997/7/11/427https://doaj.org/toc/2218-1997This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force of attraction, which has been routinely measured with high precision over the past two decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but at temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo><</mo><mn>50</mn><mrow><mo> </mo><mi mathvariant="normal">K</mi></mrow><mo>,</mo></mrow></semantics></math></inline-formula> friction increases sharply. The calculations have been carried out in the framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with perfect crystal lattices and without defects, van der Waals friction force is shown to increase with decreasing temperature as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>. In the presence of residual resistance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> of the metal, a plateau is formed on the temperature dependence of the friction force at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula> with a height proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub><msup><mrow></mrow><mrow><mo>−</mo><mn>0.8</mn></mrow></msup></mrow></semantics></math></inline-formula>. Another important finding is the weak force-distance dependence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mi>a</mi><mrow><mo>−</mo><mi>q</mi></mrow></msup></mrow></semantics></math></inline-formula> (with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>). The absolute values of the friction forces are achievable for measurements in AFM-based experiments.George DedkovMDPI AGarticlevan der Waals friction forceCasimir forceLevin-Polevoi-Rytov fluctuation-electromagnetic theoryDrude modellow-temperature dependenceElementary particle physicsQC793-793.5ENUniverse, Vol 7, Iss 427, p 427 (2021)
institution DOAJ
collection DOAJ
language EN
topic van der Waals friction force
Casimir force
Levin-Polevoi-Rytov fluctuation-electromagnetic theory
Drude model
low-temperature dependence
Elementary particle physics
QC793-793.5
spellingShingle van der Waals friction force
Casimir force
Levin-Polevoi-Rytov fluctuation-electromagnetic theory
Drude model
low-temperature dependence
Elementary particle physics
QC793-793.5
George Dedkov
Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
description This paper presents the results of calculating the van der Waals friction force (dissipative fluctuation-electromagnetic force) between metallic (Au) plates in relative motion at temperatures close to 1 K. The stopping tangential force arises between moving plates along with the usual Casimir force of attraction, which has been routinely measured with high precision over the past two decades. At room temperatures, the former force is 10 orders of magnitude less than the latter, but at temperatures <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo><</mo><mn>50</mn><mrow><mo> </mo><mi mathvariant="normal">K</mi></mrow><mo>,</mo></mrow></semantics></math></inline-formula> friction increases sharply. The calculations have been carried out in the framework of the Levin-Polevoi-Rytov fluctuation electromagnetic theory. For metallic plates with perfect crystal lattices and without defects, van der Waals friction force is shown to increase with decreasing temperature as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>T</mi><mrow><mo>−</mo><mn>4</mn></mrow></msup></mrow></semantics></math></inline-formula>. In the presence of residual resistance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub></mrow></semantics></math></inline-formula> of the metal, a plateau is formed on the temperature dependence of the friction force at <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>T</mi><mo>→</mo><mn>0</mn></mrow></semantics></math></inline-formula> with a height proportional to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ρ</mi><mn>0</mn></msub><msup><mrow></mrow><mrow><mo>−</mo><mn>0.8</mn></mrow></msup></mrow></semantics></math></inline-formula>. Another important finding is the weak force-distance dependence <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>~</mo><msup><mi>a</mi><mrow><mo>−</mo><mi>q</mi></mrow></msup></mrow></semantics></math></inline-formula> (with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo><</mo><mn>1</mn></mrow></semantics></math></inline-formula>). The absolute values of the friction forces are achievable for measurements in AFM-based experiments.
format article
author George Dedkov
author_facet George Dedkov
author_sort George Dedkov
title Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
title_short Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
title_full Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
title_fullStr Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
title_full_unstemmed Puzzling Low-Temperature Behavior of the Van Der Waals Friction Force between Metallic Plates in Relative Motion
title_sort puzzling low-temperature behavior of the van der waals friction force between metallic plates in relative motion
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/55af98fa9650477382f27aaea637f1cd
work_keys_str_mv AT georgededkov puzzlinglowtemperaturebehaviorofthevanderwaalsfrictionforcebetweenmetallicplatesinrelativemotion
_version_ 1718410217019932672