Automatically disambiguating medical acronyms with ontology-aware deep learning

Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguatio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Marta Skreta, Aryan Arbabi, Jixuan Wang, Erik Drysdale, Jacob Kelly, Devin Singh, Michael Brudno
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/55b59136062549e789f34c5a3fb40092
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:55b59136062549e789f34c5a3fb40092
record_format dspace
spelling oai:doaj.org-article:55b59136062549e789f34c5a3fb400922021-12-02T19:12:29ZAutomatically disambiguating medical acronyms with ontology-aware deep learning10.1038/s41467-021-25578-42041-1723https://doaj.org/article/55b59136062549e789f34c5a3fb400922021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25578-4https://doaj.org/toc/2041-1723Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguation in many datasets.Marta SkretaAryan ArbabiJixuan WangErik DrysdaleJacob KellyDevin SinghMichael BrudnoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Marta Skreta
Aryan Arbabi
Jixuan Wang
Erik Drysdale
Jacob Kelly
Devin Singh
Michael Brudno
Automatically disambiguating medical acronyms with ontology-aware deep learning
description Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguation in many datasets.
format article
author Marta Skreta
Aryan Arbabi
Jixuan Wang
Erik Drysdale
Jacob Kelly
Devin Singh
Michael Brudno
author_facet Marta Skreta
Aryan Arbabi
Jixuan Wang
Erik Drysdale
Jacob Kelly
Devin Singh
Michael Brudno
author_sort Marta Skreta
title Automatically disambiguating medical acronyms with ontology-aware deep learning
title_short Automatically disambiguating medical acronyms with ontology-aware deep learning
title_full Automatically disambiguating medical acronyms with ontology-aware deep learning
title_fullStr Automatically disambiguating medical acronyms with ontology-aware deep learning
title_full_unstemmed Automatically disambiguating medical acronyms with ontology-aware deep learning
title_sort automatically disambiguating medical acronyms with ontology-aware deep learning
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/55b59136062549e789f34c5a3fb40092
work_keys_str_mv AT martaskreta automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT aryanarbabi automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT jixuanwang automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT erikdrysdale automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT jacobkelly automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT devinsingh automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
AT michaelbrudno automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning
_version_ 1718377048390500352