Automatically disambiguating medical acronyms with ontology-aware deep learning
Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguatio...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55b59136062549e789f34c5a3fb40092 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:55b59136062549e789f34c5a3fb40092 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:55b59136062549e789f34c5a3fb400922021-12-02T19:12:29ZAutomatically disambiguating medical acronyms with ontology-aware deep learning10.1038/s41467-021-25578-42041-1723https://doaj.org/article/55b59136062549e789f34c5a3fb400922021-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-25578-4https://doaj.org/toc/2041-1723Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguation in many datasets.Marta SkretaAryan ArbabiJixuan WangErik DrysdaleJacob KellyDevin SinghMichael BrudnoNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Marta Skreta Aryan Arbabi Jixuan Wang Erik Drysdale Jacob Kelly Devin Singh Michael Brudno Automatically disambiguating medical acronyms with ontology-aware deep learning |
description |
Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguation in many datasets. |
format |
article |
author |
Marta Skreta Aryan Arbabi Jixuan Wang Erik Drysdale Jacob Kelly Devin Singh Michael Brudno |
author_facet |
Marta Skreta Aryan Arbabi Jixuan Wang Erik Drysdale Jacob Kelly Devin Singh Michael Brudno |
author_sort |
Marta Skreta |
title |
Automatically disambiguating medical acronyms with ontology-aware deep learning |
title_short |
Automatically disambiguating medical acronyms with ontology-aware deep learning |
title_full |
Automatically disambiguating medical acronyms with ontology-aware deep learning |
title_fullStr |
Automatically disambiguating medical acronyms with ontology-aware deep learning |
title_full_unstemmed |
Automatically disambiguating medical acronyms with ontology-aware deep learning |
title_sort |
automatically disambiguating medical acronyms with ontology-aware deep learning |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/55b59136062549e789f34c5a3fb40092 |
work_keys_str_mv |
AT martaskreta automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT aryanarbabi automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT jixuanwang automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT erikdrysdale automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT jacobkelly automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT devinsingh automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning AT michaelbrudno automaticallydisambiguatingmedicalacronymswithontologyawaredeeplearning |
_version_ |
1718377048390500352 |