Automatically disambiguating medical acronyms with ontology-aware deep learning
Disambiguating abbreviations is important for automated clinical note processing; however, deploying machine learning for this task is restricted by lack of good training data. Here, the authors show novel data augmentation methods that use biomedical ontologies to improve abbreviation disambiguatio...
Guardado en:
Autores principales: | Marta Skreta, Aryan Arbabi, Jixuan Wang, Erik Drysdale, Jacob Kelly, Devin Singh, Michael Brudno |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55b59136062549e789f34c5a3fb40092 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A deep database of medical abbreviations and acronyms for natural language processing
por: Lisa Grossman Liu, et al.
Publicado: (2021) -
Contextualizing Universal Theory of Acronym Formation in Kiswahili acronyms
por: Saul S. Bichwa
Publicado: (2021) -
An Acronymic Wilderness
por: Chris Ellis
Publicado: (2016) -
Prosody and sentence disambiguation in European Portuguese
por: Marina Vigário
Publicado: (2003) -
Automatic consistency assurance for literature-based gene ontology annotation
por: Jiyu Chen, et al.
Publicado: (2021)