End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks
Processing myoelectrical activity in the forearm has for long been considered a promising framework to allow transradial amputees to control motorized prostheses. In spite of expectations, contemporary muscle–computer interfaces built for this purpose typically fail to satisfy one or more important...
Guardado en:
Autores principales: | Alexander E. Olsson, Nebojša Malešević, Anders Björkman, Christian Antfolk |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55c4605ed76f4663bb731629dc6eb60f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A database of high-density surface electromyogram signals comprising 65 isometric hand gestures
por: Nebojša Malešević, et al.
Publicado: (2021) -
Comparing LSTM and GRU Models to Predict the Condition of a Pulp Paper Press
por: Balduíno César Mateus, et al.
Publicado: (2021) -
Expert committee classifier for hand motions recognition from EMG signals
por: Reyes López,David A., et al.
Publicado: (2018) -
Significance of EMG and ENMG in the Diagnosis and Treatment of Degenerative-Dystrophic Diseases of the Spine (Literature Review)
por: E. G. Ippolitova, et al.
Publicado: (2019) -
Short-term prediction of wind power density using convolutional LSTM network
por: Gupta Deepak, et al.
Publicado: (2021)