Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle

Alpinia oxyphylla Miq is a shade-tolerant plant that grows under rubber trees. The decreased precipitation often leads to limitation of photosynthesis and productivity of A. oxyphylla during the dry season. However, the effects of the precipitation patterns on the photosynthesis and the photoprotect...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hanting Cheng, Xiaomin Wang, Jinchuang Wang, Qinfen Li
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://doaj.org/article/55d49f8f49424ed49fadd6254c5836a6
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:55d49f8f49424ed49fadd6254c5836a6
record_format dspace
spelling oai:doaj.org-article:55d49f8f49424ed49fadd6254c5836a62021-12-04T04:36:32ZKey photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle2667-064X10.1016/j.stress.2021.100016https://doaj.org/article/55d49f8f49424ed49fadd6254c5836a62021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2667064X21000154https://doaj.org/toc/2667-064XAlpinia oxyphylla Miq is a shade-tolerant plant that grows under rubber trees. The decreased precipitation often leads to limitation of photosynthesis and productivity of A. oxyphylla during the dry season. However, the effects of the precipitation patterns on the photosynthesis and the photoprotective strategies of A. oxyphylla remains unclear. Herein, we examined how CO2 assimilation, light energy partitioning and reactive oxygen species (ROS) metabolism are affected by simulated precipitation patterns change. The change of precipitation patterns induced water deficits of different intensities and durations. With the decreased precipitation, stomatal conductance (Gs) and net CO2 assimilation rate (Pn) significantly decreased, resulting in excess excitation energy and over-accumulation of ROS, and further caused lipid peroxidation of photosynthetic apparatus. The phenomenon was exacerbated by extending the interval between precipitation. In addition, the decreased precipitation induced the xanthophyll cycle effectively dissipating excess excitation energy. Through the water-water cycle, a greater proportion of electron flux was shuffled to molecular oxygen (O2) to produce superoxide anion (O2•−), especially in plants under natural precipitation (W; 25 mm/month). This may be because the energy partitioning mechanism of A. oxyphylla can efficiently dissipate excessive excitation energy and reduce PSⅡ photoinhibition, thus rapidly adapting to precipitation patterns change. On the other hand, the decreased precipitation improved the capacity of ROS detoxification in the water-water cycle and reduced lipid peroxidation in W plants, which were reflected by the increase of SOD and CAT activities, and a partial enhancement of antioxidant enzymes and antioxidant metabolism in the water-water cycle. However, the down-regulation of antioxidant systems in W- plants (decreased precipitation; 10 mm/month) further accelerated ROS accumulation and the ability of ROS-scavenging might be partially compensated by ROS accumulation, which may had been a primary cause for limited the antioxidant protection. Overall, when CO2 assimilation reduced with the decreased precipitation, A. oxyphylla can form a photoprotective mechanism, both thermal energy dissipation and water-water cycle are crucial photoprotective pathways against photodamage in photosynthetic apparatus.Hanting ChengXiaomin WangJinchuang WangQinfen LiElsevierarticlePrecipitation patternsGas exchangeThermal energy dissipationWater-water cyclePhotoprotective pathwaysPlant ecologyQK900-989ENPlant Stress, Vol 2, Iss , Pp 100016- (2021)
institution DOAJ
collection DOAJ
language EN
topic Precipitation patterns
Gas exchange
Thermal energy dissipation
Water-water cycle
Photoprotective pathways
Plant ecology
QK900-989
spellingShingle Precipitation patterns
Gas exchange
Thermal energy dissipation
Water-water cycle
Photoprotective pathways
Plant ecology
QK900-989
Hanting Cheng
Xiaomin Wang
Jinchuang Wang
Qinfen Li
Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
description Alpinia oxyphylla Miq is a shade-tolerant plant that grows under rubber trees. The decreased precipitation often leads to limitation of photosynthesis and productivity of A. oxyphylla during the dry season. However, the effects of the precipitation patterns on the photosynthesis and the photoprotective strategies of A. oxyphylla remains unclear. Herein, we examined how CO2 assimilation, light energy partitioning and reactive oxygen species (ROS) metabolism are affected by simulated precipitation patterns change. The change of precipitation patterns induced water deficits of different intensities and durations. With the decreased precipitation, stomatal conductance (Gs) and net CO2 assimilation rate (Pn) significantly decreased, resulting in excess excitation energy and over-accumulation of ROS, and further caused lipid peroxidation of photosynthetic apparatus. The phenomenon was exacerbated by extending the interval between precipitation. In addition, the decreased precipitation induced the xanthophyll cycle effectively dissipating excess excitation energy. Through the water-water cycle, a greater proportion of electron flux was shuffled to molecular oxygen (O2) to produce superoxide anion (O2•−), especially in plants under natural precipitation (W; 25 mm/month). This may be because the energy partitioning mechanism of A. oxyphylla can efficiently dissipate excessive excitation energy and reduce PSⅡ photoinhibition, thus rapidly adapting to precipitation patterns change. On the other hand, the decreased precipitation improved the capacity of ROS detoxification in the water-water cycle and reduced lipid peroxidation in W plants, which were reflected by the increase of SOD and CAT activities, and a partial enhancement of antioxidant enzymes and antioxidant metabolism in the water-water cycle. However, the down-regulation of antioxidant systems in W- plants (decreased precipitation; 10 mm/month) further accelerated ROS accumulation and the ability of ROS-scavenging might be partially compensated by ROS accumulation, which may had been a primary cause for limited the antioxidant protection. Overall, when CO2 assimilation reduced with the decreased precipitation, A. oxyphylla can form a photoprotective mechanism, both thermal energy dissipation and water-water cycle are crucial photoprotective pathways against photodamage in photosynthetic apparatus.
format article
author Hanting Cheng
Xiaomin Wang
Jinchuang Wang
Qinfen Li
author_facet Hanting Cheng
Xiaomin Wang
Jinchuang Wang
Qinfen Li
author_sort Hanting Cheng
title Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
title_short Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
title_full Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
title_fullStr Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
title_full_unstemmed Key photoprotective pathways of a shade-tolerant plant (Alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
title_sort key photoprotective pathways of a shade-tolerant plant (alpinia oxyphylla) for precipitation patterns change during the dry season: thermal energy dissipation and water-water cycle
publisher Elsevier
publishDate 2021
url https://doaj.org/article/55d49f8f49424ed49fadd6254c5836a6
work_keys_str_mv AT hantingcheng keyphotoprotectivepathwaysofashadetolerantplantalpiniaoxyphyllaforprecipitationpatternschangeduringthedryseasonthermalenergydissipationandwaterwatercycle
AT xiaominwang keyphotoprotectivepathwaysofashadetolerantplantalpiniaoxyphyllaforprecipitationpatternschangeduringthedryseasonthermalenergydissipationandwaterwatercycle
AT jinchuangwang keyphotoprotectivepathwaysofashadetolerantplantalpiniaoxyphyllaforprecipitationpatternschangeduringthedryseasonthermalenergydissipationandwaterwatercycle
AT qinfenli keyphotoprotectivepathwaysofashadetolerantplantalpiniaoxyphyllaforprecipitationpatternschangeduringthedryseasonthermalenergydissipationandwaterwatercycle
_version_ 1718372911264301056