Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes
Abstract Tunneling nanotube (TNT), a dynamic cell–cell contact, is dependent on actin polymerization. TNTs are efficient in transporting ions, proteins and organelles intercellularly, which are important mechanisms in physiological and pathological processes. Reported studies on the existence and fu...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55d5a74b739c460ca0ca4dd145a0586d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:55d5a74b739c460ca0ca4dd145a0586d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:55d5a74b739c460ca0ca4dd145a0586d2021-12-02T16:45:47ZAstrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes10.1038/s41598-021-96332-52045-2322https://doaj.org/article/55d5a74b739c460ca0ca4dd145a0586d2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96332-5https://doaj.org/toc/2045-2322Abstract Tunneling nanotube (TNT), a dynamic cell–cell contact, is dependent on actin polymerization. TNTs are efficient in transporting ions, proteins and organelles intercellularly, which are important mechanisms in physiological and pathological processes. Reported studies on the existence and function of TNTs among neural cells focus on cultured cell for the convenience in detecting TNTs’ ultrastructure. In this study, the adeno-associated virus (AAV-GFAP-EGFP-p2A-cre) was injected into the cerebral cortex of knock-in mice ROSA26 GNZ. GFAP promoter initiated the expression of enhanced green fluorescent protein (EGFP) in infected astrocytes. At 10 days post injection (10 DPI), EGFP transferred from astrocytes in layer I–III to neurons in layer V. The dissemination of EGFP was not through endocytosis or exosome. Applying microscopes, we found that the intercellular transportation of EGFP through contact connection was F-actin dependent. Therefore, we concluded that EGFP transported from astrocytes to neurons in cortex via F-actin dependent TNTs. This study first proved that proteins transported intercellularly via TNTs in brain.Jing ChenJunyan CaoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Jing Chen Junyan Cao Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
description |
Abstract Tunneling nanotube (TNT), a dynamic cell–cell contact, is dependent on actin polymerization. TNTs are efficient in transporting ions, proteins and organelles intercellularly, which are important mechanisms in physiological and pathological processes. Reported studies on the existence and function of TNTs among neural cells focus on cultured cell for the convenience in detecting TNTs’ ultrastructure. In this study, the adeno-associated virus (AAV-GFAP-EGFP-p2A-cre) was injected into the cerebral cortex of knock-in mice ROSA26 GNZ. GFAP promoter initiated the expression of enhanced green fluorescent protein (EGFP) in infected astrocytes. At 10 days post injection (10 DPI), EGFP transferred from astrocytes in layer I–III to neurons in layer V. The dissemination of EGFP was not through endocytosis or exosome. Applying microscopes, we found that the intercellular transportation of EGFP through contact connection was F-actin dependent. Therefore, we concluded that EGFP transported from astrocytes to neurons in cortex via F-actin dependent TNTs. This study first proved that proteins transported intercellularly via TNTs in brain. |
format |
article |
author |
Jing Chen Junyan Cao |
author_facet |
Jing Chen Junyan Cao |
author_sort |
Jing Chen |
title |
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
title_short |
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
title_full |
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
title_fullStr |
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
title_full_unstemmed |
Astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires F-actin dependent tunneling nanotubes |
title_sort |
astrocyte-to-neuron transportation of enhanced green fluorescent protein in cerebral cortex requires f-actin dependent tunneling nanotubes |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/55d5a74b739c460ca0ca4dd145a0586d |
work_keys_str_mv |
AT jingchen astrocytetoneurontransportationofenhancedgreenfluorescentproteinincerebralcortexrequiresfactindependenttunnelingnanotubes AT junyancao astrocytetoneurontransportationofenhancedgreenfluorescentproteinincerebralcortexrequiresfactindependenttunnelingnanotubes |
_version_ |
1718383453781622784 |