Limited Evidence for Infection of Urban and Peri-urban Nonhuman Primates with Zika and Chikungunya Viruses in Brazil

ABSTRACT Chikungunya virus (CHIKV) and Zika virus (ZIKV) emerged in the Americas in 2013. Limited antigenic variability of CHIKV and ZIKV may restrict urban transmission cycles due to population protective immunity. In Africa, sylvatic transmission cycles involving nonhuman primates (NHP) are known...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Andres Moreira-Soto, Ianei de Oliveira Carneiro, Carlo Fischer, Marie Feldmann, Beate M. Kümmerer, Nama Santos Silva, Uilton Góes Santos, Breno Frederico de Carvalho Dominguez Souza, Fernanda de Azevedo Liborio, Mônica Mafra Valença-Montenegro, Plautino de Oliveira Laroque, Fernanda Rosa da Fontoura, Alberto Vinicius Dantas Oliveira, Christian Drosten, Xavier de Lamballerie, Carlos Roberto Franke, Jan Felix Drexler
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://doaj.org/article/55dadfd7b60f417e8283946d5dc949cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:ABSTRACT Chikungunya virus (CHIKV) and Zika virus (ZIKV) emerged in the Americas in 2013. Limited antigenic variability of CHIKV and ZIKV may restrict urban transmission cycles due to population protective immunity. In Africa, sylvatic transmission cycles involving nonhuman primates (NHP) are known for CHIKV and ZIKV, causing cyclic reemergence in humans. To evaluate whether sylvatic cycles can be expected in Latin America, we tested 207 NHP collected between 2012 and 2017 in urban and peri-urban settings in Brazil for infection with ZIKV and CHIKV. No animal tested positive for viral RNA in genus-specific and species-specific reverse transcription-PCR (RT-PCR) assays. In contrast, six animals (2.9%) from the families Atelidae, Callitrichidae, and Cebidae showed ZIKV-specific antibodies and 11 (5.3%) showed CHIKV-specific antibodies in plaque reduction neutralization tests (PRNT). Reactivity was monotypic against either ZIKV or CHIKV in all cases, opposing unspecific virucidal activity of sera. PRNT endpoint titers were low at 1:40 in all NHP, and positive specimens did not correspond to the likely dispersal route and time of introduction of both arboviruses. All antibody-positive samples were therefore tested against the NHP-associated yellow fever virus (YFV) and Mayaro virus (MAYV) and against the human-associated dengue virus (DENV) by PRNT. Two ZIKV-positive samples were simultaneously DENV positive and two CHIKV-positive samples were simultaneously MAYV positive, at titers of 1:40 to 1:160. This suggested cross-reactive antibodies against heterologous alphaviruses and flaviviruses in 24% of ZIKV-positive/CHIKV-positive sera. In sum, low seroprevalence, invariably low antibody titers, and the distribution of positive specimens call into question the capability of ZIKV and CHIKV to infect New World NHP and establish sylvatic transmission cycles. IMPORTANCE Since 2013, Zika virus (ZIKV) and chikungunya virus (CHIKV) have infected millions of people in the Americas via urban transmission cycles. Nonhuman primates (NHP) are involved in sylvatic transmission cycles maintaining ZIKV and CHIKV in the Old World. We tested NHP sampled during 2012 to 2017 in urban and peri-urban areas severely affected by ZIKV and CHIKV in Brazil. Seroprevalence and antibody titers were low for both viruses. Additionally, we found evidence for infection by heterologous viruses eliciting cross-reactive antibodies. Our data suggest that urban or peri-urban NHP are not easily infected by ZIKV and CHIKV despite intense local transmission. These data may imply that the ZIKV and CHIKV outbreaks in the Americas cannot be sustained in urban or peri-urban NHP once human population immunity limits urban transmission cycles. Investigation of diverse animals is urgently required to determine the fate of the ZIKV and CHIKV outbreaks in the Americas.