20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis
Intracerebral hemorrhage (ICH) is a highly fatal type of stroke that leads to various types of neuronal death. Recently, ferroptosis, a form of cell death resulting from iron-dependent lipid peroxide accumulation, was observed in a mouse ICH model. N-hydroxy-N′-(4-n-butyl-2-methylphenyl)-formamidine...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55de5826e0c9473c9899c4cdf2c5f2fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:55de5826e0c9473c9899c4cdf2c5f2fe |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:55de5826e0c9473c9899c4cdf2c5f2fe2021-11-12T05:32:00Z20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis1664-229510.3389/fneur.2021.763419https://doaj.org/article/55de5826e0c9473c9899c4cdf2c5f2fe2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fneur.2021.763419/fullhttps://doaj.org/toc/1664-2295Intracerebral hemorrhage (ICH) is a highly fatal type of stroke that leads to various types of neuronal death. Recently, ferroptosis, a form of cell death resulting from iron-dependent lipid peroxide accumulation, was observed in a mouse ICH model. N-hydroxy-N′-(4-n-butyl-2-methylphenyl)-formamidine (HET0016), which inhibits synthesis of the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE), has shown a protective effect after ICH. However, the underlying mechanisms of the neuroprotective effect need further investigation. We explored whether 20-HETE participates in ICH-induced ferroptosis ex vivo by using hemoglobin-treated organotypic hippocampal slice cultures (OHSCs) and in vivo by using a collagenase-induced ICH mouse model. Ex vivo, we found that the 20-HETE synthesis inhibitor HET0016 and antagonist 20-6,15-HEDGE reduced hemoglobin-induced cell death, iron deposition, and lipid reactive oxygen species levels in OHSCs. Furthermore, 20-HETE inhibition in OHSCs increased the expression of glutathione peroxidase (GPX) 4, an antioxidant enzyme that serves as a main regulator of ferroptosis. In contrast, exposure of OHSCs to the 20-HETE stable mimetic 20-5,14-HEDGE induced cell death that was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. In vivo, HET0016 treatment ameliorated focal deficits, reduced lesion volume, and decreased iron accumulation around the lesion at day 3 and 7 after ICH. In addition, lipid peroxidation was decreased and expression of GPX4 was increased in the HET0016-treated ICH group. The mitogen-activated protein kinase pathway also was inhibited by HET0016 in vivo. These results indicate that 20-HETE contributes to ICH-induced acute brain injury in part by activating ferroptosis pathways, thereby providing an upstream target for inhibiting ferroptosis.Ranran HanJieru WanXiaoning HanHonglei RenJohn R. FalckSailu MunnuriZeng-Jin YangRaymond C. KoehlerFrontiers Media S.A.article20-hydroxyeicosatetraenoic acidintracerebral hemorrhageferroptosisglutathione peroxidaselipid peroxideNeurology. Diseases of the nervous systemRC346-429ENFrontiers in Neurology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
20-hydroxyeicosatetraenoic acid intracerebral hemorrhage ferroptosis glutathione peroxidase lipid peroxide Neurology. Diseases of the nervous system RC346-429 |
spellingShingle |
20-hydroxyeicosatetraenoic acid intracerebral hemorrhage ferroptosis glutathione peroxidase lipid peroxide Neurology. Diseases of the nervous system RC346-429 Ranran Han Jieru Wan Xiaoning Han Honglei Ren John R. Falck Sailu Munnuri Zeng-Jin Yang Raymond C. Koehler 20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
description |
Intracerebral hemorrhage (ICH) is a highly fatal type of stroke that leads to various types of neuronal death. Recently, ferroptosis, a form of cell death resulting from iron-dependent lipid peroxide accumulation, was observed in a mouse ICH model. N-hydroxy-N′-(4-n-butyl-2-methylphenyl)-formamidine (HET0016), which inhibits synthesis of the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE), has shown a protective effect after ICH. However, the underlying mechanisms of the neuroprotective effect need further investigation. We explored whether 20-HETE participates in ICH-induced ferroptosis ex vivo by using hemoglobin-treated organotypic hippocampal slice cultures (OHSCs) and in vivo by using a collagenase-induced ICH mouse model. Ex vivo, we found that the 20-HETE synthesis inhibitor HET0016 and antagonist 20-6,15-HEDGE reduced hemoglobin-induced cell death, iron deposition, and lipid reactive oxygen species levels in OHSCs. Furthermore, 20-HETE inhibition in OHSCs increased the expression of glutathione peroxidase (GPX) 4, an antioxidant enzyme that serves as a main regulator of ferroptosis. In contrast, exposure of OHSCs to the 20-HETE stable mimetic 20-5,14-HEDGE induced cell death that was significantly inhibited by the ferroptosis inhibitor ferrostatin-1. In vivo, HET0016 treatment ameliorated focal deficits, reduced lesion volume, and decreased iron accumulation around the lesion at day 3 and 7 after ICH. In addition, lipid peroxidation was decreased and expression of GPX4 was increased in the HET0016-treated ICH group. The mitogen-activated protein kinase pathway also was inhibited by HET0016 in vivo. These results indicate that 20-HETE contributes to ICH-induced acute brain injury in part by activating ferroptosis pathways, thereby providing an upstream target for inhibiting ferroptosis. |
format |
article |
author |
Ranran Han Jieru Wan Xiaoning Han Honglei Ren John R. Falck Sailu Munnuri Zeng-Jin Yang Raymond C. Koehler |
author_facet |
Ranran Han Jieru Wan Xiaoning Han Honglei Ren John R. Falck Sailu Munnuri Zeng-Jin Yang Raymond C. Koehler |
author_sort |
Ranran Han |
title |
20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
title_short |
20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
title_full |
20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
title_fullStr |
20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
title_full_unstemmed |
20-HETE Participates in Intracerebral Hemorrhage-Induced Acute Injury by Promoting Cell Ferroptosis |
title_sort |
20-hete participates in intracerebral hemorrhage-induced acute injury by promoting cell ferroptosis |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/55de5826e0c9473c9899c4cdf2c5f2fe |
work_keys_str_mv |
AT ranranhan 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT jieruwan 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT xiaoninghan 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT hongleiren 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT johnrfalck 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT sailumunnuri 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT zengjinyang 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis AT raymondckoehler 20heteparticipatesinintracerebralhemorrhageinducedacuteinjurybypromotingcellferroptosis |
_version_ |
1718431168542539776 |