Randomized Projection Learning Method for Dynamic Mode Decomposition
A data-driven analysis method known as dynamic mode decomposition (DMD) approximates the linear Koopman operator on a projected space. In the spirit of Johnson–Lindenstrauss lemma, we will use a random projection to estimate the DMD modes in a reduced dimensional space. In practical applications, sn...
Guardado en:
Autores principales: | Sudam Surasinghe, Erik M. Bollt |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55dee2a3996c4ff5b281e86122c02833 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatial Covariance Modeling for Stochastic Subgrid‐Scale Parameterizations Using Dynamic Mode Decomposition
por: Federica Gugole, et al.
Publicado: (2020) -
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?
por: Erik M. Bollt, et al.
Publicado: (2021) -
Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator
por: Garcia-Tenorio Camilo, et al.
Publicado: (2021) -
Towards an Adaptive Dynamic Mode Decomposition
por: Mohammad N. Murshed, et al.
Publicado: (2022) -
Depth of anesthesia prediction via EEG signals using convolutional neural network and ensemble empirical mode decomposition
por: Ravichandra Madanu, et al.
Publicado: (2021)