Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms
Abstract The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endosc...
Enregistré dans:
Auteurs principaux: | Seong Ji Choi, Eun Sun Kim, Kihwan Choi |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/55fb76bc4ec44200b0fe0e43125cedff |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Autonomous navigation of a magnetic colonoscope using force sensing and a heuristic search algorithm
par: Hao-En Huang, et autres
Publié: (2021) -
ASSESSMENT OF SEVERITY OF ULCERATIVE COLITIS ON FIRST COLONOSCOPIC EXAMINATION
par: Rabia Tariq, et autres
Publié: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
par: Keong-Hun Choi, et autres
Publié: (2021) -
Automatic lumen detection and magnetic alignment control for magnetic-assisted capsule colonoscope system optimization
par: Sheng-Yang Yen, et autres
Publié: (2021) -
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
par: Mohsin Bilal, PhD, et autres
Publié: (2021)