Prediction of the histology of colorectal neoplasm in white light colonoscopic images using deep learning algorithms
Abstract The treatment plan of colorectal neoplasm differs based on histology. Although new endoscopic imaging systems have been developed, there are clear diagnostic thresholds and requirements in using them. To overcome these limitations, we trained convolutional neural networks (CNNs) with endosc...
Guardado en:
Autores principales: | Seong Ji Choi, Eun Sun Kim, Kihwan Choi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/55fb76bc4ec44200b0fe0e43125cedff |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autonomous navigation of a magnetic colonoscope using force sensing and a heuristic search algorithm
por: Hao-En Huang, et al.
Publicado: (2021) -
ASSESSMENT OF SEVERITY OF ULCERATIVE COLITIS ON FIRST COLONOSCOPIC EXAMINATION
por: Rabia Tariq, et al.
Publicado: (2021) -
An Adaptive Threshold for the Canny Algorithm With Deep Reinforcement Learning
por: Keong-Hun Choi, et al.
Publicado: (2021) -
Automatic lumen detection and magnetic alignment control for magnetic-assisted capsule colonoscope system optimization
por: Sheng-Yang Yen, et al.
Publicado: (2021) -
Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
por: Mohsin Bilal, PhD, et al.
Publicado: (2021)